|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_ocn861692664 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
131029s1997 enka ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d E7B
|d COO
|d OCLCO
|d OCLCQ
|d AGLDB
|d OCLCQ
|d U3W
|d VTS
|d STF
|d M8D
|d OCLCQ
|d AJS
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 715161888
|
020 |
|
|
|a 9781107088641
|q (electronic bk.)
|
020 |
|
|
|a 110708864X
|q (electronic bk.)
|
020 |
|
|
|z 0521452066
|
020 |
|
|
|z 9780521452069
|
029 |
1 |
|
|a DEBBG
|b BV043034669
|
029 |
1 |
|
|a DEBSZ
|b 421262028
|
029 |
1 |
|
|a GBVCP
|b 805077294
|
035 |
|
|
|a (OCoLC)861692664
|z (OCoLC)715161888
|
050 |
|
4 |
|a QA171.485
|b .E537 1997eb
|
072 |
|
7 |
|a MAT
|x 000000
|2 bisacsh
|
082 |
0 |
4 |
|a 511.32
|2 22
|
084 |
|
|
|a 31.12
|2 bcl
|
084 |
|
|
|a 31.10
|2 bcl
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Engel, Konrad,
|d 1956-
|
245 |
1 |
0 |
|a Sperner theory /
|c Konrad Engel.
|
264 |
|
1 |
|a Cambridge ;
|a New York :
|b Cambridge University Press,
|c 1997.
|
300 |
|
|
|a 1 online resource (ix, 417 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Encyclopedia of mathematics and its applications ;
|v volume 65
|
504 |
|
|
|a Includes bibliographical references (pages 395-412) and index.
|
505 |
0 |
|
|a 1. Introduction -- 2. Extremal problems for finite sets -- 3. Profile-polytopes for set families -- 4. The flow-theoretic approach in Sperner theory -- 5. Matchings, symmetric chain orders, and the partition lattice -- 6. Algebraic methods in Sperner theory -- 7. Limit theorems and asymptotic estimates -- 8. Macaulay posets.
|
520 |
|
|
|a This book presents Sperner theory from a unified point of view, bringing combinatorial techniques together with methods from programming (flow theory and polyhedral combinatorics), from linear algebra (Jordan decompositions, Lie-algebra representations and eigenvalue methods), from probability theory (limit theorems), and from enumerative combinatorics (Mobius inversion). Researchers in discrete mathematics, optimization, algebra, probability theory, number theory, and geometry will find many powerful new methods arising from Sperner theory.
|
588 |
0 |
|
|a Print version record.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Sperner theory.
|
650 |
|
0 |
|a Partially ordered sets.
|
650 |
|
6 |
|a Théorème de Sperner.
|
650 |
|
6 |
|a Ensembles partiellement ordonnés.
|
650 |
|
7 |
|a MATHEMATICS
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Partially ordered sets
|2 fast
|
650 |
|
7 |
|a Sperner theory
|2 fast
|
650 |
1 |
7 |
|a Combinatieleer.
|2 gtt
|
650 |
|
7 |
|a Sperner, Théorie de.
|2 ram
|
650 |
|
7 |
|a Ensembles partiellement ordonnés.
|2 ram
|
776 |
0 |
8 |
|i Print version:
|a Engel, Konrad, 1956-
|t Sperner theory
|z 0521452066
|w (DLC) 96020967
|w (OCoLC)34730719
|
830 |
|
0 |
|a Encyclopedia of mathematics and its applications ;
|v volume 65.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569334
|z Texto completo
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10450705
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 569334
|
994 |
|
|
|a 92
|b IZTAP
|