Cargando…

Data-driven modeling & scientific computation : methods for complex systems & big data /

The burgeoning field of data analysis is expanding at an incredible pace due to the proliferation of data collection in almost every area of science. The enormous data sets now routinely encountered in the sciences provide an incentive to develop mathematical techniques and computational algorithms...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kutz, Jose Nathan (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Oxford University Press, 2013
Edición:First edition
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn858861183
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130924t20132013enka ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d YDXCP  |d ZCU  |d OCLCF  |d OCLCQ  |d IDEBK  |d EBLCP  |d MHW  |d DEBSZ  |d CDX  |d COO  |d E7B  |d OTZ  |d AU@  |d YOU  |d TKN  |d UPM  |d ITD  |d UKAHL  |d OCLCQ  |d K6U  |d VLY  |d ORE  |d OCLCO  |d WAU  |d DST  |d OCLCO  |d YDX  |d OCL  |d OCLCQ  |d RBN  |d INARC  |d OCLCO 
019 |a 857278609  |a 1132278486  |a 1135358524  |a 1162585841  |a 1193063861  |a 1241954343  |a 1300675710  |a 1303321248  |a 1303510297  |a 1328632190 
020 |a 9780191635878  |q (electronic bk.) 
020 |a 0191635871  |q (electronic bk.) 
020 |a 9781299807136 
020 |a 1299807135 
020 |z 9780199660339 
020 |z 0199660336 
020 |z 9780199660346 
020 |z 0199660344 
029 1 |a AU@  |b 000051935592 
029 1 |a AU@  |b 000053968061 
029 1 |a DEBSZ  |b 393328473 
029 1 |a DEBSZ  |b 44599438X 
029 1 |a NZ1  |b 15198127 
035 |a (OCoLC)858861183  |z (OCoLC)857278609  |z (OCoLC)1132278486  |z (OCoLC)1135358524  |z (OCoLC)1162585841  |z (OCoLC)1193063861  |z (OCoLC)1241954343  |z (OCoLC)1300675710  |z (OCoLC)1303321248  |z (OCoLC)1303510297  |z (OCoLC)1328632190 
037 |a 511964  |b MIL 
050 4 |a Q183.9 
072 7 |a SCI  |x 075000  |2 bisacsh 
072 7 |a GPH  |2 bicssc 
072 7 |a PBKD  |2 bicssc 
072 7 |a PBKS  |2 bicssc 
072 7 |a UMB  |2 bicssc 
072 7 |a UYQM  |2 bicssc 
082 0 4 |a 501.519535  |2 23 
049 |a UAMI 
100 1 |a Kutz, Jose Nathan,  |e author. 
245 1 0 |a Data-driven modeling & scientific computation :  |b methods for complex systems & big data /  |c J. Nathan Kutz, Department of Applied Mathematics, University of Washington 
246 3 |a Data-driven modeling and scientific computation 
250 |a First edition 
264 1 |a Oxford :  |b Oxford University Press,  |c 2013 
264 4 |c ©2013 
300 |a 1 online resource (xvii, 638 pages) :  |b illustrations (some colour) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 629-633) and index. 
505 0 |a Part I. Basic computations and visualization. MATLAB introduction -- Linear systems -- Curve fitting -- Numerical differentiation and integration -- Basic optimization -- Visualization -- Part II. Differential and partial differential equations. Initial and boundary value problems of differential equations -- Finite difference methods -- Time and space stepping schemes : method of lines -- Spectral methods -- Finite element methods -- Part III. Computational methods for data analysis. Statistical methods and their applications -- Time-frequency analysis : fourier transforms and wavelets -- Image processing and analysis -- Linear algebra and singular value decomposition -- Independent component analysis -- Image recognition : basics of machine learning -- Basics of compressed sensing -- Dimensionality reduction for partial differential equations -- Dynamic mode decomposition -- Data assimilation methods -- Equation-free modeling -- Complex dynamical systems : combining dimensionality reduction, compressive sensing and machine learning -- Part IV. Scientific applications. Applications of differential equations and boundary value problems -- Applications of partial differential equations -- Applications of data analysis. 
520 |a The burgeoning field of data analysis is expanding at an incredible pace due to the proliferation of data collection in almost every area of science. The enormous data sets now routinely encountered in the sciences provide an incentive to develop mathematical techniques and computational algorithms that help synthesize, interpret and give meaning to the data in the context of its scientific setting. A specific aim of this book is to integrate standard scientific computing methods with data analysis. By doing so, it brings together, in a self-consistent fashion, the key ideas from: A statistics, A time-frequency analysis, and A low-dimensional reductions The blend of these ideas provides meaningful insight into the data sets one is faced with in every scientific subject today, including those generated from complex dynamical systems. This is a particularly exciting field and much of the final part of the book is driven by intuitive examples from it, showing how the three areas can be used in combination to give critical insight into the fundamental workings of various problems. Data-Driven Modeling and Scientific Computation is a survey of practical numerical solution techniques for ordinary and partial differential equations as well as algorithms for data manipulation and analysis. Emphasis is on the implementation of numerical schemes to practical problems in the engineering, biological and physical sciences. An accessible introductory-to-advanced text, this book fully integrates MATLAB and its versatile and high-level programming functionality, while bringing together computational and data skills for both undergraduate and graduate students in scientific computing."  |c publisher's description 
546 |a English. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
630 0 0 |a MATLAB. 
630 0 7 |a MATLAB  |2 fast 
650 0 |a Science  |x Data processing. 
650 0 |a Numerical analysis. 
650 0 |a Differential equations. 
650 0 |a Multivariate analysis. 
650 2 |a Multivariate Analysis 
650 6 |a Analyse multivariée. 
650 6 |a Sciences  |x Informatique. 
650 6 |a Analyse numérique. 
650 6 |a Équations différentielles. 
650 7 |a SCIENCE  |x Philosophy & Social Aspects.  |2 bisacsh 
650 7 |a Multivariate analysis  |2 fast 
650 7 |a Differential equations  |2 fast 
650 7 |a Numerical analysis  |2 fast 
650 7 |a Science  |x Data processing  |2 fast 
776 0 8 |i Print version:  |a Kutz, Jose Nathan.  |t Data-driven modeling & scientific computation.  |b First edition  |z 9780199660339  |w (DLC) 2013937977  |w (OCoLC)858608087 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=633240  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7039108 
938 |a YBP Library Services  |b YANK  |n 18045633 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26368538 
938 |a Coutts Information Services  |b COUT  |n 26037960 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1364042 
938 |a ebrary  |b EBRY  |n ebr10749049 
938 |a EBSCOhost  |b EBSC  |n 633240 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis26037960 
938 |a YBP Library Services  |b YANK  |n 11083793 
938 |a Internet Archive  |b INAR  |n datadrivenmodeli0000kutz 
994 |a 92  |b IZTAP