|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn854919480 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130802s2000 enka ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d OCLCF
|d OCLCQ
|d AGLDB
|d COO
|d STF
|d OCLCQ
|d VTS
|d REC
|d M8D
|d OCLCO
|d AJS
|d OCLCO
|d SFB
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 978633643
|a 978971606
|a 1048313353
|a 1065122126
|a 1119106068
|a 1157918361
|a 1158990465
|a 1161638935
|a 1178721509
|a 1184508832
|a 1190684905
|
020 |
|
|
|a 9781107089013
|q (electronic bk.)
|
020 |
|
|
|a 1107089018
|q (electronic bk.)
|
020 |
|
|
|z 0521584019
|
020 |
|
|
|z 9780521584012
|
029 |
1 |
|
|a DEBBG
|b BV043151773
|
029 |
1 |
|
|a DEBSZ
|b 421261609
|
029 |
1 |
|
|a GBVCP
|b 804841969
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:9910052607905765
|
035 |
|
|
|a (OCoLC)854919480
|z (OCoLC)978633643
|z (OCoLC)978971606
|z (OCoLC)1048313353
|z (OCoLC)1065122126
|z (OCoLC)1119106068
|z (OCoLC)1157918361
|z (OCoLC)1158990465
|z (OCoLC)1161638935
|z (OCoLC)1178721509
|z (OCoLC)1184508832
|z (OCoLC)1190684905
|
050 |
|
4 |
|a QA377
|
072 |
|
7 |
|a MAT
|x 007020
|2 bisacsh
|
082 |
0 |
4 |
|a 515.353
|2 22
|
084 |
|
|
|a SK 560
|2 rvk
|
084 |
|
|
|a MAT 357f
|2 stub
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Lasiecka, I.
|q (Irena),
|d 1948-
|
245 |
1 |
0 |
|a Control theory for partial differential equations :
|b continuous and approximation theories.
|n 2,
|p Abstract hyperbolic-like systems over a finite time horizon /
|c Irena Lasiecka, Roberto Triggiani.
|
246 |
3 |
0 |
|a Abstract hyperbolic-like systems over a finite time horizon
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 2000.
|
300 |
|
|
|a 1 online resource (xxi, pages 645-1067, [5] pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Encyclopedia of mathematics and its applications ;
|v v. 75
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a ""Cover""; ""Half Title""; ""Series Page""; ""Dedication""; ""Title""; ""Copyright""; ""Contents""; ""Preface""; ""Acknowledgments for the First Two Volumes""; ""7 Some Auxiliary Results on Abstract Equations""; ""7.1 Mathematical Setting and Standing Assumptions""; ""7.2 Regularity of Land L * on [0, T]""; ""7.3 A Lifting Regularity Property When eAt Is a Group""; ""7.4 Extension of Regularity of Land L* on [0, â?ž] When eAt Is Uniformly Stable""; ""7.4.1 Direct Statement; Direct Proof""; ""7.4.2 Dual Statement; Dual Proof""
|
505 |
8 |
|
|a 7.5 Generation and Abstract Trace Regularity under Unbounded Perturbation7.6 Regularity of a Class of Abstract Damped Systems -- 7.6.1 Mathematical Setting and Assumptions -- 7.6.2 Main Regularity Results -- 7.6.3 Proof of Theorem 7.6.2.2: Dual Statement (7.6.2.6) -- 7.7 Illustrations of Theorem 7.6.2.2 to Boundary Damped Wave Equations -- 7.7.1 Wave Equation with Boundary Damping in the Neumann Be -- 7.7.2 Wave Equation with Boundary Damping in the Dirichlet BC -- Notes on Chapter 7 -- References and Bibliography
|
505 |
8 |
|
|a ""8 Optimal Quadratic Cost Problem Over a Preassigned Finite Time Interval: The Case Where the Input â?? Solution Map Is Unbounded, but the Input â?? Observation Map Is Bounded""""8.1 Mathematical Setting and Formulation of the Problem""; ""8.2 Statement of Main Results""; ""8.2.1 The General Case: Theorem 8.2.1.1, Theorem 8.2.1.2, and Theorem 8.2.1.3""; ""8.2.2 The Regular Case: Theorem 8.2.2.1""; ""8.3 The General Case. A First Proof of Theorems 8.2.1.1 and 8.2.1.2 by a Variational Approach: From the Optimal Control Problem to the DRE and the IRE Theorem 8.2.1.3""
|
505 |
8 |
|
|a ""8.3.1 Explicit Representation Formulas for the Optimal Pair {uo, yo} under (h.1), (h.3)""""8.3.2 Estimates on uo ( • ,t; x) and Ryo ( . ,t; x). The Operator Î? ( . , . )""; ""8.3.3 Definition of P(t) and Preliminary Properties""; ""8.3.4 P(t) Solves the Differential Riccati Equation (8.2.1.32)""; ""8.3.5 Differential and Integral Riccati Equations""; ""8.3.6 The IRE without Passing through the DRE""; ""8.3.7 Uniqueness""; ""8.3.8 Proof of Theorem 8.2.1.3""; ""8.4 A Second Direct Proof of Theorem 8.2.1.2: From the Well-Posedness of the IRE to the Control Problem. Dynamic Programming""
|
505 |
8 |
|
|a 8.4.1 Existence and Uniqueness: Preliminaries8.4.2 Unique Local Solution to Eqn. (8.4.1.5)for Q(t, s) -- 8.4.3 Unique Local Solution to Eqn. (8.4.1. 7) for V(t). Global Solution P(t) under (h.1), (h.2) -- 8.4.4 Global A Priori Estimates for V and Q. Global Solution P(t) under (H. 1), (H.2), and (H.3) -- 8.4.5 Recovering the Optimal Control Problem under (H.I), (H.2), and (H.3) for (h.I) and (h.2)] -- 8.5 Proof of Theorem 8.2.2.1: The More Regular Case -- 8.5.1 A Preliminary Lemma -- 8.5.2 Completion of the Proof of Theorem 8.2.2.1 -- 8.5.3 An Auxiliary Lemma
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Differential equations, Partial.
|
650 |
|
0 |
|a Control theory.
|
650 |
|
6 |
|a Équations aux dérivées partielles.
|
650 |
|
6 |
|a Théorie de la commande.
|
650 |
|
7 |
|a MATHEMATICS
|x Differential Equations
|x Partial.
|2 bisacsh
|
650 |
|
7 |
|a Control theory
|2 fast
|
650 |
|
7 |
|a Differential equations, Partial
|2 fast
|
650 |
|
7 |
|a Hyperbolische Differentialgleichung
|2 gnd
|
700 |
1 |
|
|a Triggiani, R.
|q (Roberto),
|d 1942-
|
776 |
0 |
8 |
|i Print version:
|a Lasiecka, I. (Irena), 1948-
|t Control theory for partial differential equations : 2, Abstract hyperbolic-like systems over a finite time horizon.
|d Cambridge : Cambridge University Press, 2000
|z 0521584019
|w (DLC) 99011617
|w (OCoLC)316647885
|
830 |
|
0 |
|a Encyclopedia of mathematics and its applications ;
|v v. 75.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569393
|z Texto completo
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 569393
|
994 |
|
|
|a 92
|b IZTAP
|