Cargando…

Lie's structural approach to PDE systems /

This book provides a lucid and comprehensive introduction to the differential geometric study of partial differential equations. It was the first book to present substantial results on local solvability of general and, in particular, nonlinear PDE systems without using power series techniques. The b...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Stormark, Olle, 1945-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Cambridge University Press, 2000.
Colección:Encyclopedia of mathematics and its applications ; v. 80.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn852899174
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130716s2000 nyu ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d CAMBR  |d IDEBK  |d E7B  |d OCLCF  |d OCLCQ  |d AGLDB  |d YDX  |d OCLCQ  |d HEBIS  |d OCLCO  |d COO  |d VTS  |d STF  |d AU@  |d M8D  |d UKAHL  |d OCLCQ  |d K6U  |d INARC  |d SFB  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 841393163 
020 |a 9781107089426  |q (electronic bk.) 
020 |a 1107089425  |q (electronic bk.) 
020 |a 9780511569456  |q (electronic bk.) 
020 |a 0511569459  |q (electronic bk.) 
020 |z 0521780888 
020 |z 9780521780889 
029 1 |a DEBBG  |b BV043092199 
029 1 |a DEBSZ  |b 421262141 
029 1 |a GBVCP  |b 804799350 
035 |a (OCoLC)852899174  |z (OCoLC)841393163 
050 4 |a QA377  |b .S846 2000eb 
072 7 |a MAT  |x 007020  |2 bisacsh 
082 0 4 |a 515/.353  |2 22 
084 |a 31.45  |2 bcl 
049 |a UAMI 
100 1 |a Stormark, Olle,  |d 1945- 
245 1 0 |a Lie's structural approach to PDE systems /  |c Olle Stormark. 
260 |a New York :  |b Cambridge University Press,  |c 2000. 
300 |a 1 online resource (xv, 572 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Encyclopedia of mathematics and its applications ;  |v 80 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
520 |a This book provides a lucid and comprehensive introduction to the differential geometric study of partial differential equations. It was the first book to present substantial results on local solvability of general and, in particular, nonlinear PDE systems without using power series techniques. The book describes a general approach to systems of partial differential equations based on ideas developed by Lie, Cartan and Vessiot. The most basic question is that of local solvability, but the methods used also yield classifications of various families of PDE systems. The central idea is the exploitation of singular vector field systems and their first integrals. These considerations naturally lead to local Lie groups, Lie pseudogroups and the equivalence problem, all of which are covered in detail. This book will be a valuable resource for graduate students and researchers in partial differential equations, Lie groups and related fields. 
505 0 |a Cover; Half Title; Series Page; Title; Copyright; Contents; Preface; 1 Introduction and summary; 2 PDE systems, pfaffian systems and vector field systems; 2.1 ODE systems, vector fields and 1-parameter groups; 2.2 First order PDE systems in one dependent variable, pfaffian equations and contact transformations; 2.3 Jet bundles and contact pfaffian systems; 2.4 The theorem of Frobenius; 2.5 Mayer's blowing-up method for proving the Frobenius theorem; 3 Cartan's local existence theorem; 3.1 Involutions and characters; 3.2 From involutions to complete systems 
505 8 |a 3.3 How general is the general solution?3.4 Cauchy characteristics; 3.5 Maximal involutions and integrable vector field systems; 4 Involutivity and the prolongation theorem; 4.1 Independence condition and involutivity; 4.2 Prolongations; 4.3 Explanation of the prolongation theorem; 5 Drach's classification, second order PDEs in one dependent variable, and Monge characteristics; 5.1 The classification of Drach; 5.2 Second order PDEs in one unknown and their singular vector fields; 5.3 Monge characteristic subsystems; 6 Integration of vector field systems V satisfying dim V' = dim V +1 
505 8 |a 6.1 Maximal involutions6.2 Complete subsystems; 6.3 The generalized contact bracket; 6.4 Reduction to a canonical form and systems of contact coordinates; 6.5 How to find all maximal complete subsystems of V; 6.6 Contact transformations and Lie pseudogroups; 7 Higher order contact transformations; 7.1 Lie's rectification theorem for first order PDE systems in one dependent variable; 7.2 Backlund's theorems; 7.3 Contact prolongations of local diffeomorphisms; 8 Local Lie groups; 8.1 The parameter group and its structure constants; 8.2 The left- and right-invariant parameter groups 
505 8 |a 8.3 Left- and right-invariant vector fields and their dual Maurer-Cartan forms8.4 One-parameter subgroups and the exponential mapping; 8.5 The first and second fundamental theorems; 8.6 The third fundamental theorem; 8.7 Local transformation groups; 9 Structural classification of 3-dimensional Lie algebras over the complex numbers; 9.1 The classification; 9.2 Realizations as transformation groups; 10 Lie equations and Lie vector field systems; 10.1 Characterization of ODE systems with fundamental solutions; 10.2 Lie vector field systems associated to Lie groups 
505 8 |a 11 Second order PDEs in one dependent and two independent variables11.1 Second order PDEs and associated vector field systems; 11.2 Monge systems; 11.3 A connection with line geometry; 11.4 Darboux's method for hyperbolic PDEs; 12 Hyperbolic PDEs with Monge systems admitting two or three first integrals; 12.1 First integrals of the first order; 12.2 Two first integrals for each Monge system; 12.3 How to find integral manifolds; 12.4 Integrable systems; 12.5 Two first integrals for one Monge system and three for the other; 12.6 Three first integrals for each Monge system 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Differential equations, Partial  |x Numerical solutions. 
650 6 |a Équations aux dérivées partielles  |x Solutions numériques. 
650 7 |a MATHEMATICS  |x Differential Equations  |x Partial.  |2 bisacsh 
650 7 |a Differential equations, Partial  |x Numerical solutions.  |2 fast  |0 (OCoLC)fst00893488 
650 7 |a Lie-Algebra  |2 gnd 
650 7 |a Partielle Differentialgleichung  |2 gnd 
650 1 7 |a Partiële differentiaalvergelijkingen.  |2 gtt 
650 1 7 |a Lie-groepen.  |2 gtt 
650 7 |a Équations aux dérivées partielles  |x Analyse numérique.  |2 ram 
776 0 8 |i Print version:  |a Stormark, Olle, 1945-  |t Lie's structural approach to PDE systems.  |d New York : Cambridge University Press, 2000  |z 0521780888  |w (DLC) 99054436  |w (OCoLC)42752834 
830 0 |a Encyclopedia of mathematics and its applications ;  |v v. 80. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569323  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26385530 
938 |a ebrary  |b EBRY  |n ebr10733679 
938 |a EBSCOhost  |b EBSC  |n 569323 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis26006586 
938 |a Internet Archive  |b INAR  |n liesstructuralap0000stor 
938 |a YBP Library Services  |b YANK  |n 10440722 
994 |a 92  |b IZTAP