|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn846492919 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130603s1983 enk ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d CAMBR
|d IDEBK
|d OCLCF
|d YDXCP
|d OCLCQ
|d AGLDB
|d XFH
|d OCLCO
|d OCLCQ
|d UAB
|d VTS
|d REC
|d OCLCO
|d STF
|d AU@
|d OCLCO
|d OCLCA
|d M8D
|d INARC
|d OCLCQ
|d OCLCO
|d UKAHL
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 841396509
|a 994608493
|
020 |
|
|
|a 9781107087309
|q (electronic bk.)
|
020 |
|
|
|a 1107087309
|q (electronic bk.)
|
020 |
|
|
|a 9781107325531
|q (electronic bk.)
|
020 |
|
|
|a 1107325536
|q (electronic bk.)
|
020 |
|
|
|a 1299706843
|
020 |
|
|
|a 9781299706842
|
020 |
|
|
|z 0521274893
|
020 |
|
|
|z 9780521274890
|
029 |
1 |
|
|a DEBBG
|b BV043101665
|
029 |
1 |
|
|a DEBSZ
|b 421262206
|
029 |
1 |
|
|a GBVCP
|b 804684537
|
035 |
|
|
|a (OCoLC)846492919
|z (OCoLC)841396509
|z (OCoLC)994608493
|
050 |
|
4 |
|a QA649
|b .T73 1983eb
|
072 |
|
7 |
|a MAT
|x 038000
|2 bisacsh
|
082 |
0 |
4 |
|a 514/.74
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Tricerri, F.
|q (Franco),
|d 1947-
|
245 |
1 |
0 |
|a Homogeneous structures on Riemannian manifolds /
|c F. Tricerri, L. Vanhecke.
|
260 |
|
|
|a Cambridge [Cambridgeshire] ;
|a New York :
|b Cambridge University Press,
|c 1983.
|
300 |
|
|
|a 1 online resource (v, 125 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society lecture note series ;
|v 83
|
504 |
|
|
|a Includes bibliographical references (pages 120-123) and index.
|
588 |
0 |
|
|a Print version record.
|
546 |
|
|
|a English.
|
520 |
|
|
|a The central theme of this book is the theorem of Ambrose and Singer, which gives for a connected, complete and simply connected Riemannian manifold a necessary and sufficient condition for it to be homogeneous. This is a local condition which has to be satisfied at all points, and in this way it is a generalization of E. Cartan's method for symmetric spaces. The main aim of the authors is to use this theorem and representation theory to give a classification of homogeneous Riemannian structures on a manifold. There are eight classes, and some of these are discussed in detail. Using the constructive proof of Ambrose and Singer many examples are discussed with special attention to the natural correspondence between the homogeneous structure and the groups acting transitively and effectively as isometrics on the manifold.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Riemannian manifolds.
|
650 |
|
6 |
|a Variétés de Riemann.
|
650 |
|
7 |
|a MATHEMATICS
|x Topology.
|2 bisacsh
|
650 |
|
7 |
|a Riemannian manifolds
|2 fast
|
650 |
|
7 |
|a Differenzierbare Mannigfaltigkeit
|2 gnd
|
650 |
|
7 |
|a Riemannscher Raum
|2 gnd
|
650 |
|
7 |
|a Riemann, Variétés de.
|2 ram
|
700 |
1 |
|
|a Vanhecke, L.
|
776 |
0 |
8 |
|i Print version:
|a Tricerri, F. (Franco), 1947-
|t Homogeneous structures on Riemannian manifolds.
|d Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1983
|z 0521274893
|w (DLC) 83002097
|w (OCoLC)9370863
|
830 |
|
0 |
|a London Mathematical Society lecture note series ;
|v 83.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569317
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH25052464
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 569317
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis25780918
|
938 |
|
|
|a Internet Archive
|b INAR
|n homogeneousstruc0083tric
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10440782
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10734745
|
994 |
|
|
|a 92
|b IZTAP
|