Cargando…

Ergodicity for infinite dimensional systems /

This book is devoted to the asymptotic properties of solutions of stochastic evolution equations in infinite dimensional spaces. It is divided into three parts: Markovian dynamical systems; invariant measures for stochastic evolution equations; invariant measures for specific models. The focus is on...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Da Prato, Giuseppe
Otros Autores: Zabczyk, Jerzy
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 1996.
Colección:London Mathematical Society lecture note series ; 229.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn836864257
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130408s1996 enk ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d IDEBK  |d OCLCF  |d YDXCP  |d OCLCQ  |d AGLDB  |d OCLCQ  |d OCLCO  |d COO  |d VTS  |d REC  |d OCLCO  |d STF  |d M8D  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 726825233 
020 |a 9781107362499  |q (electronic bk.) 
020 |a 1107362490  |q (electronic bk.) 
020 |z 0521579007 
020 |z 9780521579001 
029 1 |a DEBBG  |b BV043112291 
029 1 |a DEBSZ  |b 42126604X 
029 1 |a GBVCP  |b 804533709 
035 |a (OCoLC)836864257  |z (OCoLC)726825233 
050 4 |a QA274.25  |b .D38 1996eb 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.2  |2 22 
084 |a 31.70  |2 bcl 
084 |a SI 320  |2 rvk 
084 |a SK 810  |2 rvk 
084 |a MAT 344f  |2 stub 
084 |a MAT 606f  |2 stub 
049 |a UAMI 
100 1 |a Da Prato, Giuseppe. 
245 1 0 |a Ergodicity for infinite dimensional systems /  |c G. Da Prato, J. Zabczyk. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 1996. 
300 |a 1 online resource (xi, 339 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 229 
504 |a Includes bibliographical references (pages 321-337) and index. 
505 0 |a I. Markovian Dynamical Systems. 1. General Dynamical Systems. 2. Canonical Markovian Systems. 3. Ergodic and mixing measures. 4. Regular Markovian systems -- II. Invariant measures for stochastic evolution equations. 5. Stochastic Differential Equations. 6. Existence of invariant measures. 7. Uniqueness of invariant measures. 8. Densities of invariant measures -- III. Invariant measures for specific models. 9. Ornstein -- Uhlenbeck processes. 10. Stochastic delay systems. 11. Reaction-Diffusion equations. 12. Spin systems. 13. Systems perturbed through the boundary. 14. Burgers equation. 15. Navier-Stokes equations -- IV. Appendices -- A Smoothing properties of convolutions -- B An estimate on modulus of continuity -- C A result on implicit functions. 
588 0 |a Print version record. 
520 |a This book is devoted to the asymptotic properties of solutions of stochastic evolution equations in infinite dimensional spaces. It is divided into three parts: Markovian dynamical systems; invariant measures for stochastic evolution equations; invariant measures for specific models. The focus is on models of dynamical processes affected by white noise, which are described by partial differential equations such as the reaction-diffusion equations or Navier-Stokes equations. Besides existence and uniqueness questions, special attention is paid to the asymptotic behaviour of the solutions, to invariant measures and ergodicity. Some of the results found here are presented for the first time. For all whose research interests involve stochastic modelling, dynamical systems, or ergodic theory, this book will be an essential purchase. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Stochastic partial differential equations  |x Asymptotic theory. 
650 0 |a Differentiable dynamical systems. 
650 0 |a Ergodic theory. 
650 6 |a Équations aux dérivées partielles stochastiques  |x Théorie asymptotique. 
650 6 |a Dynamique différentiable. 
650 6 |a Théorie ergodique. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Differentiable dynamical systems  |2 fast 
650 7 |a Ergodic theory  |2 fast 
650 7 |a Stochastic partial differential equations  |x Asymptotic theory  |2 fast 
650 7 |a Asymptotisches Lösungsverhalten  |2 gnd 
650 7 |a Evolutionsgleichung  |2 gnd 
650 7 |a Stochastische Differentialgleichung  |2 gnd 
650 7 |a Unendlichdimensionaler Raum  |2 gnd 
650 7 |a Feller-Halbgruppe  |2 gnd 
650 7 |a Stochastisches dynamisches System  |2 gnd 
650 1 7 |a Oneindige dimensie.  |2 gtt 
650 1 7 |a Ergodiciteit.  |2 gtt 
650 1 7 |a Stochastische differentiaalvergelijkingen.  |2 gtt 
650 7 |a Equations aux dérivées partielles stochastiques.  |2 ram 
650 7 |a Dynamique différentiable.  |2 ram 
650 7 |a Théorie ergodique.  |2 ram 
700 1 |a Zabczyk, Jerzy. 
776 0 8 |i Print version:  |a Da Prato, Giuseppe.  |t Ergodicity for infinite dimensional systems.  |d Cambridge ; New York : Cambridge University Press, 1996  |z 0521579007  |w (DLC) 96001602  |w (OCoLC)34243299 
830 0 |a London Mathematical Society lecture note series ;  |v 229. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552521  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10458792 
938 |a EBSCOhost  |b EBSC  |n 552521 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25154597 
938 |a YBP Library Services  |b YANK  |n 10405668 
994 |a 92  |b IZTAP