Cargando…

Local analysis for the odd order theorem /

In 1963 Walter Feit and John G. Thompson proved the Odd Order Theorem, which states that every finite group of odd order is solvable. The influence of both the theorem and its proof on the further development of finite group theory can hardly be overestimated. The proof consists of a set of prelimin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bender, Helmut, 1942-
Otros Autores: Glauberman, G., 1941-, Carlip, Walter, 1956-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge [England] ; New York : Cambridge University Press, 1994.
Colección:London Mathematical Society lecture note series ; 188.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn836864153
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130408s1994 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d OCLCF  |d YDXCP  |d OCLCQ  |d AGLDB  |d UAB  |d OCLCQ  |d VTS  |d REC  |d STF  |d M8D  |d UKAHL  |d VLY  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 726825065  |a 1162462427  |a 1241779672  |a 1242485348 
020 |a 9781107362024  |q (electronic bk.) 
020 |a 1107362024  |q (electronic bk.) 
020 |a 1139886533 
020 |a 9781139886536 
020 |a 1107366933 
020 |a 9781107366930 
020 |a 1107371589 
020 |a 9781107371583 
020 |a 1107368499 
020 |a 9781107368491 
020 |a 1299404650 
020 |a 9781299404656 
020 |a 1107364477 
020 |a 9781107364479 
020 |a 0511892853 
020 |a 9780511892851 
020 |a 0511665598 
020 |a 9780511665592 
020 |z 0521457165 
020 |z 9780521457163 
029 1 |a DEBBG  |b BV043112297 
029 1 |a DEBSZ  |b 421265965 
029 1 |a GBVCP  |b 804532923 
029 1 |a DKDLA  |b 820120-katalog:9910051036305765 
035 |a (OCoLC)836864153  |z (OCoLC)726825065  |z (OCoLC)1162462427  |z (OCoLC)1241779672  |z (OCoLC)1242485348 
050 4 |a QA177  |b .B46 1994eb 
072 7 |a MAT  |x 014000  |2 bisacsh 
082 0 4 |a 512/.2  |2 22 
084 |a 31.21  |2 bcl 
049 |a UAMI 
100 1 |a Bender, Helmut,  |d 1942- 
245 1 0 |a Local analysis for the odd order theorem /  |c Helmut Bender and George Glauberman, with the assistance of Walter Carlip. 
260 |a Cambridge [England] ;  |a New York :  |b Cambridge University Press,  |c 1994. 
300 |a 1 online resource (xi, 174 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 188 
504 |a Includes bibliographical references (pages 167-168) and index. 
505 0 |a Ch. I. Preliminary Results. 1. Elementary Properties of Solvable Groups. 2. General Results on Representations. 3. Actions of Frobenius Groups and Related Results. 4. p-Groups of Small Rank. 5. Narrow p-Groups. 6. Additional Results -- Ch. II. The Uniqueness Theorem. 7. The Transitivity Theorem. 8. The Fitting Subgroup of a Maximal Subgroup. 9. The Uniqueness Theorem -- Ch. III. Maximal Subgroups. 10. The Subgroups M[subscript [alpha]] and A[subscript [sigma]]. 11. Exceptional Maximal Subgroups. 12. The Subgroup E. 13. Prime Action -- Ch. IV. The Family of All Maximal Subgroups of G. 14. Maximal Subgroups of Type [actual symbol not reproducible] and Counting Arguments. 15. The Subgroup M[subscript F]. 16. The Main Results -- App. A: Prerequisites and p-Stability -- App. B: The Puig Subgroup -- App. C: The Final Contradiction -- App. D: CN-Groups of Odd Order -- App. E: Further Results of Feit and Thompson. 
520 |a In 1963 Walter Feit and John G. Thompson proved the Odd Order Theorem, which states that every finite group of odd order is solvable. The influence of both the theorem and its proof on the further development of finite group theory can hardly be overestimated. The proof consists of a set of preliminary results followed by three parts: local analysis, characters, and generators and relations (Chapters IV, V, and VI of the paper). 
520 8 |a Local analysis is the study of the centralizers and normalizers of non-identity p-subgroups, with Sylow's Theorem as the first main tool. The main purpose of the book is to present a new version of the local analysis of the Feit-Thompson Theorem (Chapter IV of the original paper and its preliminaries). It includes a recent (1991) significant improvement by Feit and Thompson and a short revision by T. Peterfalvi of the separate final section of the second half of the proof. The book should interest finite group theorists as well as other mathematicians who wish to get a glimpse of one of the most famous and most forbidding theorems in mathematics. Current research may eventually lead to a revised proof of the entire theorem, but this goal is several years away. For the present, the authors are publishing this work as a set of lecture notes to contribute to the general understanding of the theorem and to further improvements. 
588 0 |a Print version record. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Feit-Thompson theorem. 
650 0 |a Solvable groups. 
650 6 |a Théorème de Feit et Thompson. 
650 6 |a Groupes résolubles. 
650 7 |a MATHEMATICS  |x Group Theory.  |2 bisacsh 
650 7 |a Feit-Thompson theorem.  |2 fast  |0 (OCoLC)fst00922543 
650 7 |a Solvable groups.  |2 fast  |0 (OCoLC)fst01125664 
650 1 7 |a Lokale analyse (wiskunde)  |2 gtt 
650 7 |a Grupos finitos.  |2 larpcal 
650 7 |a Feit-Thompson, théorème de.  |2 ram 
650 7 |a Groupes solubles.  |2 ram 
700 1 |a Glauberman, G.,  |d 1941- 
700 1 |a Carlip, Walter,  |d 1956- 
776 0 8 |i Print version:  |a Bender, Helmut, 1942-  |t Local analysis for the odd order theorem.  |d Cambridge [England] ; New York : Cambridge University Press, 1994  |z 0521457165  |w (DLC) 94031147  |w (OCoLC)31131671 
830 0 |a London Mathematical Society lecture note series ;  |v 188. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552530  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH13428741 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26385493 
938 |a ebrary  |b EBRY  |n ebr10458666 
938 |a EBSCOhost  |b EBSC  |n 552530 
938 |a YBP Library Services  |b YANK  |n 3582302 
938 |a YBP Library Services  |b YANK  |n 10405629 
938 |a YBP Library Services  |b YANK  |n 10689713 
938 |a YBP Library Services  |b YANK  |n 10370352 
994 |a 92  |b IZTAP