Cargando…

Computer physics /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Doherty, Brian S., Molloy, Amy N.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hauppauge, N.Y. : Nova Science Publishers, ©2011.
Colección:Physics research and technology.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • ""COMPUTER PHYSICS""; ""PHYSICS RESEARCH AND TECHNOLOGY""; ""COMPUTER SCIENCE, TECHNOLOGYAND APPLICATIONS""; ""COMPUTER PHYSICS""; ""LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA""; ""CONTENTS""; ""PREFACE""; ""CHAPTER 1. MULTIDIMENSIONAL EXPERIMENTAL DATAPROCESSING IN NUCLEAR PHYSICS""; ""Abstract""; ""1. Introduction""; ""2. Event Data Sorting""; ""2.1. Introduction""; ""2.2. Sorting of High-Fold Data from Î?-ray Detector Arrays""; ""2.3. Proposed Sorting Methods""; ""2.3.1. Rectangular Window""; ""2.3.2. Polygon""; ""2.3.3. Arithmetic Function""; ""2.3.4. Spherical Gates""
  • 2.3.5. Ellipsoids2.3.6. Composed Gates
  • 2.4. Examples and Discussion
  • 3. Background Estimation in Spectroscopic Data
  • 3.1. Introduction
  • 3.2. One-Dimensional Spectra
  • 3.2.1. Order of the Clipping Filter
  • 3.2.2. Increasing versus Decreasing Clipping Window
  • 3.2.3. Background Estimation with Simultaneous Smoothing
  • 3.2.4. Background Estimation in Spectra with Non-symmetrical Peaks
  • 3.3. Two-Dimensional Spectra
  • 3.3.1. Order of the Clipping Filter
  • 3.3.2. Background Estimation with Simultaneous Smoothing
  • ""3.3.3. Different Widths of Clipping Window""""3.3.4. Skew Ridges""; ""3.3.5. Nonlinear Ridges""; ""3.4. Three-Dimensional Spectra ""; ""3.4.1. Order of the Clipping Filter""; ""3.4.2. Background Estimation with Simultaneous Smoothing""; ""3.5. Four-Dimensional Spectra""; ""3.6. Generalization for N-dimensional Î?-ray Coincidence Spectra""; ""3.6.1. Order of the Clipping Filter""; ""3.6.2. Background Estimation with Simultaneous Smoothing""; ""4. Deconvolution""; ""4.1. Introduction""; ""4.2. Brief Overview of Deconvolution Methods""; ""4.3. Study of Deconvolution Algorithms""
  • 4.4. Boosted Deconvolution4.5. Robustness
  • 4.6. Two-Dimensional Spectra
  • 4.7. Three-Dimensional Spectra
  • 4.8. Linear Time Dependent Systems
  • 5. Identification of Spectroscopic Information Carrier Objects
  • 5.1. Peak Searching
  • 5.1.1. Peak Searching Algorithm Based on Smoothed Second Differences
  • a. One-dimensional Spectra
  • b. Two-dimensional Spectra
  • c. Three and m-dimensional Spectra
  • 5.1.2. Peak Searching Algorithm Based on Markov Chain Method
  • a. One-dimensional Spectra
  • b. Two-Dimensional Spectra
  • c. Three-Dimensional Spectra
  • D. M-dimensional Spectra5.1.3. Deconvolution Based Peak Searching Algorithms
  • a. One-Dimensional Spectra
  • b. Two-Dimensional Spectra
  • c. Sigma Range Peak Search
  • 5.2. Identification of Isotope Lines in Two-Dimensional Spectra of NuclearMultifragmentation
  • 5.2.1. Proposal of the Algorithm
  • 5.2.2. Discussion and Results
  • 5.3. Identification of Rings in Spectra from RICH Detectors [91]
  • 5.3.1. Proposal of the Algorithm
  • 5.3.2. Study and Properties of the Algorithm
  • 6. Fitting
  • 6.1. Introduction