Fractional Kinetics in Solids : Anomalous Charge Transport in Semiconductors, Dielectrics, and Nanosystems /
The standard (Markovian) transport model based on the Boltzmann equation cannot describe some non-equilibrium processes called anomalous that take place in many disordered solids. Causes of anomality lie in non-uniformly scaled (fractal) spatial heterogeneities, in which particle trajectories take c...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hackensack, New Jersey :
World Scientific,
[2013]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Statistical grounds. 1.1. Levy stable statistics. 1.2. Random flight models. 1.3. Some properties of the fractional Poisson process. 1.4. Random flights on a one-dimensional Levy-Lorentz gas. 1.5. Subdiffusion
- 2. Fractional kinetics of dispersive transport. 2.1. Macroscopic phenomenology. 2.2. Microscopic backgrounds of dispersive transport. 2.3. Fractional formalism of multiple trapping. 2.4. Some applications
- 3. Transient processes in disordered semiconductor structures. 3.1. Time-of-flight method. 3.2. Non-homogeneous distribution of traps. 3.3. Transient processes in a diode under dispersive transport conditions. 3.4. Frequency properties of disordered semiconductor structures
- 4. Fractional kinetics in quantum dots and wires. 4.1. Fractional optics of quantum dots. 4.2. Charge kinetics in colloidal quantum dot arrays. 4.3. Conductance through fractal quantum conductors
- 5. Fractional relaxation in dielectrics. 5.1. The relaxation problem. 5.2. Fractional approach. 5.3. The Cole-Cole kinetics. 5.4. The Havriliak-Negami kinetics. 5.5. The Kohlrausch-Williams-Watts kinetics
- 6. The scale correspondence principle. 6.1. Finity and infinity. 6.2. Intermediate space-asymptotics. 6.3. Intermediate time-asymptoics. 6.4. Concluding remarks.