Cargando…

The prime number theorem /

At first glance the prime numbers appear to be distributed in a very irregular way amongst the integers, but it is possible to produce a simple formula that tells us (in an approximate but well defined sense) how many primes we can expect to find that are less than any integer we might choose. The p...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Jameson, G. J. O. (Graham James Oscar)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 2003.
Colección:London Mathematical Society student texts ; 53.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn817922016
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 121114s2003 enk ob 001 0 eng d
040 |a CAMBR  |b eng  |e pn  |c CAMBR  |d IDEBK  |d N$T  |d OCLCF  |d YDXCP  |d EBLCP  |d DEBSZ  |d E7B  |d OCLCQ  |d C6I  |d OCLCQ  |d BUB  |d YDX  |d OCLCO  |d OCLCQ  |d OCLCO  |d COO  |d VTS  |d AGLDB  |d REC  |d OCLCO  |d AU@  |d OCLCO  |d G3B  |d STF  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 852898528  |a 853359681  |a 857078710 
020 |a 9781139164986  |q (electronic bk.) 
020 |a 1139164988  |q (electronic bk.) 
020 |a 9780511078194  |q (electronic bk.) 
020 |a 0511078196  |q (electronic bk.) 
020 |a 9780511076626 
020 |a 0511076622 
020 |a 9781107101470  |q (e-book) 
020 |a 1107101476  |q (e-book) 
020 |z 0521814111 
020 |z 9780521814119 
020 |z 0521891108 
020 |z 9780521891103 
029 1 |a AU@  |b 000055852733 
029 1 |a DEBBG  |b BV043059549 
029 1 |a DEBSZ  |b 391498576 
029 1 |a DEBSZ  |b 445552425 
029 1 |a DEBSZ  |b 446489735 
035 |a (OCoLC)817922016  |z (OCoLC)852898528  |z (OCoLC)853359681  |z (OCoLC)857078710 
050 4 |a QA246  |b .J36 2003eb 
072 7 |a MAT  |x 022000  |2 bisacsh 
082 0 4 |a 512/.72  |2 22 
084 |a SK 180  |2 rvk 
084 |a MAT 100f  |2 stub 
049 |a UAMI 
100 1 |a Jameson, G. J. O.  |q (Graham James Oscar) 
245 1 4 |a The prime number theorem /  |c G.J.O. Jameson. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2003. 
300 |a 1 online resource (x, 252 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society student texts ;  |v 53 
504 |a Includes bibliographical references (pages 249-250) and index. 
588 0 |a Print version record. 
520 |a At first glance the prime numbers appear to be distributed in a very irregular way amongst the integers, but it is possible to produce a simple formula that tells us (in an approximate but well defined sense) how many primes we can expect to find that are less than any integer we might choose. The prime number theorem tells us what this formula is and it is indisputably one of the great classical theorems of mathematics. This textbook gives an introduction to the prime number theorem suitable for advanced undergraduates and beginning graduate students. The author's aim is to show the reader how the tools of analysis can be used in number theory to attack a 'real' problem, and it is based on his own experiences of teaching this material. 
505 0 0 |g 1.  |t Foundations --  |g 2.  |t Some important Dirichlet series and arithmetic functions --  |g 3.  |t basic theorems --  |g 4.  |t Prime numbers in residue classes: Dirichlet's theorem --  |g 5.  |t Error estimates and the Riemann hypothesis --  |g 6.  |t "elementary" proof of the prime number theorem --  |g App. A.  |t Complex functions of a real variable --  |g App. B.  |t Double series and multiplication of series --  |g App. C.  |t Infinite products --  |g App. D.  |t Differentiation under the integral sign --  |g App. E.  |t O, o notation --  |g App. F.  |t Computing values of [pi](x) --  |g App. G.  |t Table of primes --  |g App. H.  |t Biographical notes. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Numbers, Prime. 
650 6 |a Nombres premiers. 
650 7 |a MATHEMATICS  |x Number Theory.  |2 bisacsh 
650 7 |a Numbers, Prime  |2 fast 
650 7 |a Primzahl  |2 gnd 
650 7 |a Primzahltheorie  |2 gnd 
776 0 8 |i Print version:  |a Jameson, G.J.O. (Graham James Oscar).  |t Prime number theorem.  |d Cambridge ; New York : Cambridge University Press, 2003  |z 0521814111  |w (DLC) 2002074199  |w (OCoLC)50253282 
830 0 |a London Mathematical Society student texts ;  |v 53. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=125089  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26478539 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL221065 
938 |a ebrary  |b EBRY  |n ebr10733618 
938 |a EBSCOhost  |b EBSC  |n 125089 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25836207 
938 |a YBP Library Services  |b YANK  |n 10866225 
938 |a YBP Library Services  |b YANK  |n 10869784 
938 |a YBP Library Services  |b YANK  |n 9248584 
938 |a YBP Library Services  |b YANK  |n 10861968 
994 |a 92  |b IZTAP