Geometry from a differentiable viewpoint /
"The development of geometry from Euclid to Euler to Lobachevsky, Bolyai, Gauss, and Riemann is a story that is often broken into parts - axiomatic geometry, non-Euclidean geometry, and differential geometry. This poses a problem for undergraduates: Which part is geometry? What is the big pictu...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York :
Cambridge University Press,
2013.
|
Edición: | 2nd ed. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Spherical geometry
- Euclid
- The theory of parallels
- Non-Euclidean geometry
- Curves in the plane
- Curves in space
- Surfaces
- Map projections
- Curvature for surfaces
- Metric equivalence of surfaces
- Geodesics
- The Gauss-Bonnet Theorem
- Constant-curvature surfaces
- Abstract surfaces
- Modeling the non-Euclidean plane.