Chargement en cours…

Vectors in 2 or 3 dimensions /

Vectors in 2 or 3 Dimensions provides an introduction to vectors from their very basics. The author has approached the subject from a geometrical standpoint and although applications to mechanics will be pointed out and techniques from linear algebra employed, it is the geometric view which is empha...

Description complète

Détails bibliographiques
Cote:Libro Electrónico
Auteur principal: Hirst, A. E.
Format: Électronique eBook
Langue:Inglés
Publié: London : Arnold, 1995.
Collection:Modular mathematics series.
Sujets:
Accès en ligne:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBSCO_ocn815471179
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 970529s1995 enka o 001 0 eng d
010 |z  00456397  
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCO  |d OCLCQ  |d N$T  |d OCLCF  |d EBLCP  |d OCLCQ  |d DEBSZ  |d YDXCP  |d OCLCQ  |d AGLDB  |d MERUC  |d OCLCQ  |d VTS  |d NLE  |d UKMGB  |d OCLCQ  |d BRX  |d STF  |d OCLCQ  |d VLY  |d MM9  |d VHC  |d OCLCO  |d OCLCQ  |d OCLCO 
016 7 |a 017585520  |2 Uk 
016 7 |a 00456397.  |2 Uk 
019 |a 818819969  |a 1077577418  |a 1119013014  |a 1158990612  |a 1159687402  |a 1162224177  |a 1171073976  |a 1180930858  |a 1188980107  |a 1241751026  |a 1300603304  |a 1303396007 
020 |a 9780080572017  |q (electronic bk.) 
020 |a 0080572014  |q (electronic bk.) 
020 |z 0340614692 
020 |z 9780340614693 
020 |a 1283619377 
020 |a 9781283619370 
020 |a 9786613931825 
020 |a 6613931829 
029 1 |a DEBBG  |b BV043774312 
029 1 |a DEBSZ  |b 449332942 
029 1 |a DEBSZ  |b 472763911 
029 1 |a UKMGB  |b 017585520 
035 |a (OCoLC)815471179  |z (OCoLC)818819969  |z (OCoLC)1077577418  |z (OCoLC)1119013014  |z (OCoLC)1158990612  |z (OCoLC)1159687402  |z (OCoLC)1162224177  |z (OCoLC)1171073976  |z (OCoLC)1180930858  |z (OCoLC)1188980107  |z (OCoLC)1241751026  |z (OCoLC)1300603304  |z (OCoLC)1303396007 
037 |a 9780080572017  |b Ingram Content Group 
050 4 |a QA433  |b .H56 1995eb 
072 7 |a MAT  |x 033000  |2 bisacsh 
082 0 4 |a 515/.63  |2 21 
049 |a UAMI 
100 1 |a Hirst, A. E. 
245 1 0 |a Vectors in 2 or 3 dimensions /  |c A.E. Hirst. 
246 3 |a Vectors in two or three dimensions 
260 |a London :  |b Arnold,  |c 1995. 
300 |a 1 online resource (x, 134 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Modular mathematics series 
500 |a Includes index. 
505 0 |a Front Cover; Vectors in 2 or 3 Dimensions; Copyright Page; Table of Contents; Series Preface; Preface; Chapter 1. Introduction to Vectors; 1.1 Vectors and scalars; 1.2 Basic definitions and notation; 1.3 Addition of vectors; Summary; Further exercises; Chapter 2. Vector Equation of a Straight Line; 2.1 The vector equation of a straight line; 2.2 The cartesian equations of a straight line; 2.3 A point dividing a line segment in a given ratio; 2.4 Points of intersection of lines; 2.5 Some applications; Summary; Further exercises; Chapter 3. Scalar Products and Equations of Planes. 
505 8 |a 3.1 The scalar product3.2 Projections and components; 3.3 Angles from scalar products; 3.4 Vector equation of a plane; 3.5 The intersection of two planes; 3.6 The intersection of three planes; Summary; Further exercises; Chapter 4. Vector Products; 4.1 Definition and geometrical description; 4.2 Vector equation of a plane given three points on it; 4.3 Distance of a point from a line; 4.4 Distance between two lines; 4.5 The intersection of two planes; 4.6 Triple scalar product; 4.7 Triple vector product; Summary; Further exercises. 
505 8 |a Chapter 5. The Vector Spaces IR2 and IR3, Linear Combinations and Bases5.1 The vector space IRn; 5.2 Subspaces of IRn; 5.3 Linear combinations; 5.4 Bases for vector spaces; 5.5 Orthogonal bases; 5.6 Gram-Schmidt orthogonalisation process; Summary; Further exercises; Chapter 6. Linear Transformations; 6.1 Linear transformations; 6.2 Linear transformations of IR2; 6.3 Some special linear transformations of IR2; 6.4 Combinations of linear transformations; 6.5 Fixed lines, eigenvectors and eigenvalues; 6.6 Eigenvectors and eigenvalues in special cases; 6.7 Linear transformations of IR3. 
505 8 |a 6.8 Special cases in IR3Summary; Further exercises; Chapter 7. General Reflections, Rotations and Translations in IR3; 7.1 Reflections; 7.2 Rotation; 7.3 Translations; 7.4 Isometries; 7.5 Combinations of reflections, rotations and translations; Summary; Further exercises; Chapter 8. Vector-valued Functions of a Single Variable; 8.1 Parameters; 8.2 Differentiation of vectors and derived vectors in IR3; 8.3 Curves in three dimensions; 8.4 Rules for differentiating vectors; 8.5 The Serret-Frenet equations of a curve in IR3; Summary; Further exercises. 
505 8 |a Chapter 9. Non-rectangular Coordinate Systems and Surfaces9.1 Polar coordinates in IR2; 9.2 Spherical polar coordinates in IR3; 9.3 Cylindrical polar coordinates in IR3; 9.4 Surfaces; 9.5 Partial differentiation; 9.6 Tangent planes; 9.7 Gradient, divergence and curl; 9.8 Further study; Summary; Further exercises; Answers to Exercises; Index. 
520 |a Vectors in 2 or 3 Dimensions provides an introduction to vectors from their very basics. The author has approached the subject from a geometrical standpoint and although applications to mechanics will be pointed out and techniques from linear algebra employed, it is the geometric view which is emphasised throughout. Properties of vectors are initially introduced before moving on to vector algebra and transformation geometry. Vector calculus as a means of studying curves and surfaces in 3 dimensions and the concept of isometry are introduced later, providing a stepping stone to mo. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Vector analysis. 
650 0 |a Vector algebra. 
650 6 |a Analyse vectorielle. 
650 6 |a Algèbre vectorielle. 
650 7 |a MATHEMATICS  |x Vector Analysis.  |2 bisacsh 
650 7 |a Vector algebra  |2 fast 
650 7 |a Vector analysis  |2 fast 
776 0 8 |i Print version:  |a Hirst, Ann.  |t Vectors in Two or Three Dimensions.  |d Oxford : Elsevier Science, ©1995  |z 9780340614693 
830 0 |a Modular mathematics series. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=501441  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1061945 
938 |a ebrary  |b EBRY  |n ebr10606233 
938 |a EBSCOhost  |b EBSC  |n 501441 
938 |a YBP Library Services  |b YANK  |n 9753094 
994 |a 92  |b IZTAP