Cargando…

The Road to Maxwell's demon /

"Time asymmetric phenomena are successfully predicted by statistical mechanics. Yet the foundations of this theory are surprisingly shaky. Its explanation for the ease of mixing milk with coffee is incomplete, and even implies that un-mixing them should be just as easy. In this book the authors...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hemmo, Meir
Otros Autores: Shenker, Orly
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, U.K. ; New York : Cambridge University Press, 2012.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Introduction
  • 2. Thermodynamics
  • 2.1. The experience of asymmetry in time
  • 2.2. The Law of Conservation of Energy
  • 2.3. The Law of Approach to Equilibrium
  • 2.4. The Second Law of Thermodynamics
  • 2.5. The status of the laws of thermodynamics
  • 3. Classical mechanics
  • 3.1. The fundamental theory of the world
  • 3.2. Introducing classical mechanics
  • 3.3. Mechanical states
  • 3.4. Time evolution of mechanical states
  • 3.5. Thermodynamic magnitudes
  • 3.6. A mechanical no-go theorem
  • 3.7. The ergodic approach
  • 3.8. Conclusion
  • 4. Time
  • 4.1. Introduction: why mechanics cannot underwrite thermodynamics
  • 4.2. Classical kinematics
  • 4.3. The direction of time and the direction of velocity in time
  • 4.4. The description of mechanical states
  • 4.5. Velocity reversal
  • 4.6. Retrodiction
  • 4.7. Time reversal and time-reversal invariance
  • 4.8. Why the time-reversal invariance of classical mechanics matters
  • 5. Macrostates
  • 5.1. The physical nature of macrostates
  • 5.2. How do macrostates come about?
  • 5.3. Explaining thermodynamics with macrostates
  • 5.4. The dynamics of macrostates
  • 5.5. The physical origin of thermodynamic macrostates
  • 5.6. Boltzmann's macrostates
  • 5.7. Maxwell-Boltzmann distribution
  • 5.8. The observer in statistical mechanics
  • 5.9. Counterfactual observers
  • 6. Probability
  • 6.1. Introduction
  • 6.2. Probability in statistical mechanics
  • 6.3. Choice of measure in statistical mechanics
  • 6.4. Measure of a macrostate and its probability
  • 6.5. Transition probabilities without blobs
  • 6.6. Dependence on observed history?
  • 6.7. The spin echo experiments
  • 6.8. Robustness of transition probabilities
  • 6.9. No probability over initial conditions
  • 7. Entropy
  • 7.1. Introduction
  • 7.2. Entropy
  • 7.3. The distinction between entropy and probability
  • 7.4. Equilibrium in statistical mechanics
  • 7.5. Law of Approach to Equilibrium
  • 7.6. Second Law of Thermodynamics
  • 7.7. Boltzmann's H-theorem
  • 7.8. Loschmidt's reversibility objection
  • 7.9. Poincare's recurrence theorem
  • 7.10. Boltzmann's combinatorial argument
  • 7.11. Back to Boltzmann's equation: Lanford's theorem
  • 7.12. Conclusion
  • 8. Typicality
  • 8.1. Introduction
  • 8.2. The explanatory arrow in statistical mechanics
  • 8.3. Typicality
  • 8.4. Are there natural measures?
  • 8.5. Typical initial conditions
  • 8.6. Measure-1 theorems and typicality
  • 8.7. Conclusion
  • 9. Measurement
  • 9.1. Introduction
  • 9.2. What is measurement in classical mechanics?
  • 9.3. Collapse in classical measurement
  • 9.4. State preparation
  • 9.5. The shadows approach
  • 9.6. Entropy
  • 9.7. Status of the observer
  • 10. The past
  • 10.1. Introduction
  • 10.2. The problem of retrodiction
  • 10.3. The Past Hypothesis: memory and measurement
  • 10.4. The Reliability Hypothesis
  • 10.5. Past low entropy hypothesis
  • 10.6. Remembering the future
  • 10.7. Problem of initial improbable state
  • 10.8. The dynamics of the Past Hypothesis
  • 10.9. Local and global Past Hypotheses
  • 10.10. Past Hypothesis and physics of memory
  • 10.11. Memory in a time-reversed universe
  • 11. Gibbs
  • 11.1. Introduction
  • 11.2. The Gibbsian method in equilibrium
  • 11.3. Gibbsian method in terms of blobs and macrostates
  • 11.4. Gibbsian equilibrium probability distributions
  • 11.5. The approach to equilibrium
  • 12. Erasure
  • 12.1. Introduction
  • 12.2. Why there is no microscopic erasure
  • 12.3. What is a macroscopic erasure?
  • 12.4. Necessary and sufficient conditions for erasure
  • 12.5. Logic and entropy
  • 12.6. Another logically irreversible operation
  • 12.7. Logic and entropy: a model
  • 12.8. What does erasure erase?
  • 12.9. Conclusion
  • 13. Maxwell's Demon
  • 13.1. Thermodynamic and statistical mechanical demons
  • 13.2. Szilard's insight
  • 13.3. Entropy reduction: measurement
  • 13.4. Efficiency and predictability
  • 13.5. Completing the cycle of operation: erasure
  • 13.6. The Liberal Stance
  • 13.7. Conclusion
  • Appendix A Szilard's engine
  • Appendix B Quantum mechanics
  • B.1. Albert's approach
  • B.2. Bohmian mechanics
  • B.3. A quantum mechanical Maxwellian Demon.