Cargando…

Density ratio estimation in machine learning /

"Machine learning is an interdisciplinary field of science and engineering that studies mathematical theories and practical applications of systems that learn. This book introduces theories, methods, and applications of density ratio estimation, which is a newly emerging paradigm in the machine...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sugiyama, Masashi, 1974-
Otros Autores: Suzuki, Taiji, 1981-, Kanamori, Takafumi, 1972-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Cambridge University Press, 2012.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn801405274
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 120723s2012 nyua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d UIU  |d COO  |d YDXCP  |d IUL  |d OCLCQ  |d OCLCF  |d OCLCQ  |d OCLCA  |d OCLCQ  |d BUF  |d UAB  |d OCLCQ  |d OCLCO  |d YDX  |d INARC 
019 |a 798344041  |a 1330602682 
020 |a 9781139233255  |q (electronic bk.) 
020 |a 1139233254  |q (electronic bk.) 
020 |a 9781139035613  |q (electronic bk.) 
020 |a 1139035614  |q (electronic bk.) 
020 |z 9780521190176  |q (hardback) 
020 |z 0521190177  |q (hardback) 
024 8 |a 7109893 
024 8 |a 9786613719034 
035 |a (OCoLC)801405274  |z (OCoLC)798344041  |z (OCoLC)1330602682 
050 4 |a QA276.8  |b .S84 2012eb 
072 7 |a COM  |x 005030  |2 bisacsh 
072 7 |a COM  |x 004000  |2 bisacsh 
082 0 4 |a 006.3/1  |2 23 
084 |a COM016000  |2 bisacsh 
049 |a UAMI 
100 1 |a Sugiyama, Masashi,  |d 1974- 
245 1 0 |a Density ratio estimation in machine learning /  |c Masashi Sugiyama, Taiji Suzuki, Takafumi Kanamori. 
260 |a New York :  |b Cambridge University Press,  |c 2012. 
300 |a 1 online resource (xii, 329 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |a Part I. Density-Ratio Approach to Machine Learning: 1. Introduction -- Part II. Methods of Density-Ratio Estimation: 2. Density estimation; 3. Moment matching; 4. Probabilistic classification; 5. Density fitting; 6. Density-ratio fitting; 7. Unified framework; 8. Direct density-ratio estimation with dimensionality reduction -- Part III. Applications of Density Ratios in Machine Learning: 9. Importance sampling; 10. Distribution comparison; 11. Mutual information estimation; 12. Conditional probability estimation -- Part IV. Theoretical Analysis of Density-Ratio Estimation: 13. Parametric convergence analysis; 14. Non-parametric convergence analysis; 15. Parametric two-sample test; 16. Non-parametric numerical stability analysis -- Part V. Conclusions: 17. Conclusions and future directions. 
520 |a "Machine learning is an interdisciplinary field of science and engineering that studies mathematical theories and practical applications of systems that learn. This book introduces theories, methods, and applications of density ratio estimation, which is a newly emerging paradigm in the machine learning community. Various machine learning problems such as nonstationarity adaptation, outlier detection, dimensionality reduction, independent component analysis, clustering, classification, and conditional density estimation can be systematically solved via the estimation of probability density ratios. The authors offer a comprehensive introduction of various density ratio estimators including methods via density estimation, moment matching, probabilistic classification, density fitting, and density ratio fitting as well as describing how these can be applied to machine learning. The book also provides mathematical theories for density ratio estimation including parametric and non-parametric convergence analysis and numerical stability analysis to complete the first and definitive treatment of the entire framework of density ratio estimation in machine learning"--  |c Provided by publisher. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Estimation theory. 
650 0 |a Machine learning. 
650 6 |a Théorie de l'estimation. 
650 6 |a Apprentissage automatique. 
650 7 |a COMPUTERS  |x Computer Vision & Pattern Recognition.  |2 bisacsh 
650 7 |a COMPUTERS  |x Enterprise Applications  |x Business Intelligence Tools.  |2 bisacsh 
650 7 |a COMPUTERS  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Estimation theory.  |2 fast  |0 (OCoLC)fst00915531 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
700 1 |a Suzuki, Taiji,  |d 1981- 
700 1 |a Kanamori, Takafumi,  |d 1972- 
776 0 8 |i Print version:  |a Sugiyama, Masashi, 1974-  |t Density ratio estimation in machine learning.  |d New York : Cambridge University Press, 2012  |z 9780521190176  |w (DLC) 2011051726  |w (OCoLC)757931191 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=435286  |z Texto completo 
938 |a EBSCOhost  |b EBSC  |n 435286 
938 |a YBP Library Services  |b YANK  |n 8923664 
938 |a YBP Library Services  |b YANK  |n 9003493 
938 |a YBP Library Services  |b YANK  |n 9445030 
938 |a Internet Archive  |b INAR  |n densityratioesti0000sugi 
938 |a YBP Library Services  |b YANK  |n 7499418 
994 |a 92  |b IZTAP