Cargando…

Machine Learning for Financial Engineering.

This volume investigates algorithmic methods based on machine learning in order to design sequential investment strategies for financial markets. Such sequential investment strategies use information collected from the market's past and determine, at the beginning of a trading period, a portfol...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gyorfi, Laszlo
Otros Autores: Ottucsak, Gyorgy, Walk, Harro
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific, 2012.
Colección:Advances in computer science and engineering. Texts.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBSCO_ocn794328402
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 120528s2012 si o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d LGG  |d CDX  |d YDXCP  |d N$T  |d OCLCA  |d OCLCQ  |d DEBSZ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d AGLDB  |d ZCU  |d MERUC  |d OCLCQ  |d STF  |d OCLCF  |d JBG  |d OCLCQ  |d VTS  |d ICG  |d OCLCQ  |d TKN  |d DKC  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ 
019 |a 794262982 
020 |a 9781848168145  |q (electronic bk.) 
020 |a 1848168144  |q (electronic bk.) 
020 |z 9781848168138 
020 |z 1848168136 
029 1 |a AU@  |b 000054187920 
029 1 |a DEBBG  |b BV042961103 
029 1 |a DEBBG  |b BV044165390 
029 1 |a DEBSZ  |b 379327848 
029 1 |a DEBSZ  |b 421411694 
029 1 |a DEBSZ  |b 454997523 
029 1 |a AU@  |b 000073139252 
035 |a (OCoLC)794328402  |z (OCoLC)794262982 
050 4 |a Q325.5 .M321 2012 
072 7 |a COM  |x 005030  |2 bisacsh 
072 7 |a COM  |x 004000  |2 bisacsh 
082 0 4 |a 006.31 
049 |a UAMI 
100 1 |a Gyorfi, Laszlo. 
245 1 0 |a Machine Learning for Financial Engineering. 
260 |a Singapore :  |b World Scientific,  |c 2012. 
300 |a 1 online resource (261 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Advances in Computer Science and Engineering: Texts 
505 0 |a Preface; Contents; 1. On the History of the Growth-Optimal Portfolio M.M. Christensen; 1.1. Introduction and Historical Overview; 1.2. Theoretical Studies of the GOP; 1.2.1. Discrete Time; 1.2.2. Continuous-Time; 1.3. The GOP as an Investment Strategy; 1.3.1. Is the GOP Better? -- The Samuelson Controversy; 1.3.2. Capital Growth and the Mean-Variance Approach; 1.3.2.1. Discrete time; 1.3.2.2. Continuous time; 1.3.3. How Long Does it Take for the GOP to Outperform other Portfolios?; 1.4. The GOP and the Pricing of Financial Assets and Derivatives; 1.4.1. Incomplete Markets. 
505 8 |a 1.4.1.1. Utility-Based Pricing1.4.1.2. The Minimal Martingale Measure; 1.4.1.3. Good-Deal Bounds; 1.4.2. A World Without a Risk-Neutral Measure; 1.5. Empirical Studies of the GOP; 1.5.1. Composition of the GOP; 1.5.1.1. Discrete-Time Models; 1.5.1.2. Continuous Time Models; 1.6. Conclusion; References; 2. Empirical Log-Optimal Portfolio Selections: A Survey L. Gyorfi, Gy. Ottucsak and A. Urban; 2.1. Introduction; 2.2. Constantly-Rebalanced Portfolio Selection; 2.2.1. Log-Optimal Portfolio for Memoryless Market Process; 2.2.2. Examples for the Constantly-Rebalanced Portfolio. 
505 8 |a 2.2.3. Semi-Log-Optimal Portfolio2.3. Time-Varying Portfolio Selection; 2.3.1. Log-Optimal Portfolio for Stationary Market Process; 2.3.2. Empirical Portfolio Selection; 2.3.3. Regression Function Estimation; 2.3.4. Histogram-Based Strategy; 2.3.5. Kernel-Based Strategy; 2.3.6. Nearest-Neighbor-Based Strategy; 2.3.7. Numerical Results on Empirical Portfolio Selection; References; 3. Log-Optimal Portfolio-Selection Strategies with Proportional Transaction Costs L. Gyorfi and H. Walk; 3.1. Introduction; 3.2. Mathematical Setup: Investment with Proportional Transaction Cost. 
505 8 |a 3.3. Experiments on Heuristic Algorithms3.4. Growth-Optimal Portfolio Selection Algorithms; 3.5. Portfolio Selection with Consumption; 3.6. Proofs; References; 4. Growth-Optimal Portfolio Selection with Short Selling and Leverage M. Horvath and A. Urban; 4.1. Introduction; 4.2. Non-Leveraged, Long-Only Investment; 4.3. Short Selling; 4.3.1. No-Ruin Constraints; 4.3.2. Optimality Condition for Short Selling with Cash Account; 4.4. Long-Only Leveraged Investment; 4.4.1. No-Ruin Condition; 4.4.2. Kuhn-Tucker Characterization; 4.5. Short Selling and Leverage; 4.6. Experiments; References. 
505 8 |a 5. Nonparametric Sequential Prediction of Stationary Time Series L. Gyorfi and Gy. Ottucsak5.1. Introduction; 5.2. Nonparametric Regression Estimation; 5.2.1. The Regression Problem; 5.2.2. Regression Function Estimation and L2 Error; 5.2.3. Partitioning Estimate; 5.2.4. Kernel Estimate; 5.2.5. Nearest-Neighbor Estimate; 5.2.6. Empirical Error Minimization; 5.3. Universally Consistent Predictions: Bounded Y; 5.3.1. Partition-Based Prediction Strategies; 5.3.2. Kernel-Based Prediction Strategies; 5.3.3. Nearest-Neighbor-Based Prediction Strategy; 5.3.4. Generalized Linear Estimates. 
500 |a 5.4. Universally Consistent Predictions: Unbounded Y. 
520 |a This volume investigates algorithmic methods based on machine learning in order to design sequential investment strategies for financial markets. Such sequential investment strategies use information collected from the market's past and determine, at the beginning of a trading period, a portfolio; that is, a way to invest the currently available capital among the assets that are available for purchase or investment. The aim is to produce a self-contained text intended for a wide audience, including researchers and graduate students in computer science, finance, statistics, mathematics, and eng. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Financial engineering  |x Data processing. 
650 0 |a Machine learning. 
650 0 |a Investments  |x Data processing. 
650 6 |a Ingénierie financière  |x Informatique. 
650 6 |a Apprentissage automatique. 
650 6 |a Investissements  |x Informatique. 
650 7 |a COMPUTERS  |x Enterprise Applications  |x Business Intelligence Tools.  |2 bisacsh 
650 7 |a COMPUTERS  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Investments  |x Data processing.  |2 fast  |0 (OCoLC)fst00978247 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
700 1 |a Ottucsak, Gyorgy. 
700 1 |a Walk, Harro. 
776 0 8 |i Print version:  |a Gyorfi, Laszlo.  |t Machine Learning for Financial Engineering.  |d Singapore : World Scientific, ©2012  |z 9781848168138 
830 0 |a Advances in computer science and engineering.  |p Texts. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=457208  |z Texto completo 
938 |a Coutts Information Services  |b COUT  |n 22579779 
938 |a EBL - Ebook Library  |b EBLB  |n EBL919109 
938 |a EBSCOhost  |b EBSC  |n 457208 
938 |a YBP Library Services  |b YANK  |n 7466860 
994 |a 92  |b IZTAP