Cargando…

Linear Algebra Tools for Data Mining.

This comprehensive volume presents the foundations of linear algebra ideas and techniques applied to data mining and related fields. Linear algebra has gained increasing importance in data mining and pattern recognition, as shown by the many current data mining publications, and has a strong impact...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Simovici, Dan A.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific, 2012.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBSCO_ocn794328371
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 120528s2012 si ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d IDEBK  |d N$T  |d YDXCP  |d OCLCQ  |d OCLCO  |d CDX  |d OCLCF  |d B24X7  |d COO  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d E7B  |d I9W  |d OCLCQ  |d JBG  |d AGLDB  |d VGM  |d OTZ  |d LIV  |d OCLCQ  |d OCLCA  |d VTS  |d REC  |d OCLCQ  |d AU@  |d TKN  |d OCLCQ  |d STF  |d M8D  |d UKAHL  |d OCLCQ  |d EYM  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 794902750  |a 797852467  |a 817084882  |a 966358439  |a 995040230  |a 1058455785  |a 1086556051  |a 1181941465  |a 1264726290  |a 1297304287  |a 1297674036 
020 |a 9789814383509  |q (electronic bk.) 
020 |a 9814383503  |q (electronic bk.) 
020 |a 1280669896 
020 |a 9781280669897 
020 |z 9789814383493 
020 |z 981438349X 
029 1 |a AU@  |b 000053310616 
029 1 |a DEBBG  |b BV042961136 
029 1 |a DEBSZ  |b 423765590 
029 1 |a NZ1  |b 14690739 
035 |a (OCoLC)794328371  |z (OCoLC)794902750  |z (OCoLC)797852467  |z (OCoLC)817084882  |z (OCoLC)966358439  |z (OCoLC)995040230  |z (OCoLC)1058455785  |z (OCoLC)1086556051  |z (OCoLC)1181941465  |z (OCoLC)1264726290  |z (OCoLC)1297304287  |z (OCoLC)1297674036 
037 |a 919074  |b Proquest Ebook Central 
050 4 |a QA76.9 .D343 
072 7 |a UNF  |2 bicssc 
072 7 |a COM  |x 021030  |2 bisacsh 
072 7 |a COM  |x 005030  |2 bisacsh 
072 7 |a COM  |x 004000  |2 bisacsh 
082 0 4 |a 006.3  |a 006.312 
049 |a UAMI 
100 1 |a Simovici, Dan A. 
245 1 0 |a Linear Algebra Tools for Data Mining. 
260 |a Singapore :  |b World Scientific,  |c 2012. 
300 |a 1 online resource (878 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Preface; Contents; Part 1 Linear Algebra; 1. Modules and Linear Spaces; 1.1 Introduction; 1.2 Permutations; 1.3 Groups, Rings, and Fields; 1.4 Closure and Interior Systems; 1.5 Modules; 1.6 Linear Mappings; 1.7 Submodules; 1.8 Linear Combinations; 1.9 The Lattice of Submodules of a Module; 1.10 Linear Independence; 1.11 Linear Spaces; 1.12 Module Isomorphism Theorems; 1.13 Direct Sums and Direct Products; 1.14 Dual Modules and Linear Spaces; 1.15 Topological Linear Spaces; Exercises and Supplements; Bibliographical Comments; 2. Matrices; 2.1 Introduction; 2.2 Matrices with Arbitrary Elements. 
505 8 |a 2.3 Rings and Matrices2.4 Special Classes of Matrices; 2.5 Complex Matrices; 2.6 Partitioned Matrices and Matrix Operations; 2.7 Invertible Matrices; 2.8 Matrices and Linear Transformations; 2.9 The Notion of Rank; 2.10 Matrix Similarity and Congruence; 2.11 Linear Systems and Matrices; 2.12 The Row Echelon Form of Matrices; 2.13 The Kronecker and Hadamard Products; 2.14 Linear Inequalities; 2.15 Complex Multilinear Forms; Exercises and Supplements; Bibliographical Comments; 3. MATLAB; 3.1 Introduction; 3.2 The Interactive Environment of MATLAB. 
505 8 |a 3.3 Number Representation and Arithmetic Computations3.4 Matrices Representation; 3.5 Random Matrices; 3.6 Control Structures; 3.7 Indexing; 3.8 Functions; 3.9 Matrix Computations; Exercises and Supplements; Bibliographical Comments; 4. Determinants; 4.1 Introduction; 4.2 Multilinear Forms; 4.3 Cramer's Formula; 4.4 Partitioned Matrices and Determinants; MATLAB Computations; Exercises and Supplements; Bibliographical Comments; 5. Norms on Linear Spaces; 5.1 Introduction; 5.2 Fundamental Inequalities; 5.3 Metric Spaces; 5.4 Norms; 5.5 Vector Norms on Rn. 
505 8 |a 5.6 The Topology of Normed Linear Spaces5.7 Norms for Matrices; 5.8 Matrix Sequences and Matrix Series; 5.9 Condition Numbers for Matrices; 5.10 Conjugate Norms; MATLAB Computations; Exercises and Supplements; Bibliographical Comments; 6. Inner Product Spaces; 6.1 Introduction; 6.2 Inner Products and Norms; 6.3 Orthogonality; 6.4 Hyperplanes in Rn; 6.5 Unitary and Orthogonal Matrices; 6.6 Projection on Subspaces; 6.7 Positive Definite and Positive Semidefinite Matrices; 6.8 The Gram-Schmidt Orthogonalization Algorithm; 6.9 The QR Factorization of Matrices; 6.10 Matrix Groups. 
505 8 |a MATLAB ComputationsExercises and Supplements; Bibliographical Comments; 7. Convexity; 7.1 Introduction; 7.2 Convex Sets; 7.3 Separation of Convex Sets; 7.4 Cones in Rn; 7.5 Convex Functions; 7.6 Convexity and Inequalities; 7.7 Constrained Extrema and Convexity; Exercises and Supplements; Bibliographical Comments; 8. Eigenvalues; 8.1 Introduction; 8.2 Eigenvalues and Eigenvectors; 8.3 The Characteristic Polynomial of a Matrix; 8.4 Spectra of Special Matrices; 8.5 Geometry of Eigenvalues; 8.6 Spectra of Kronecker Products; 8.7 The Power Method for Eigenvalues; 8.8 The QR Iterative Algorithm. 
500 |a MATLAB Computations. 
520 |a This comprehensive volume presents the foundations of linear algebra ideas and techniques applied to data mining and related fields. Linear algebra has gained increasing importance in data mining and pattern recognition, as shown by the many current data mining publications, and has a strong impact in other disciplines like psychology, chemistry, and biology. The basic material is accompanied by more than 550 exercises and supplements, many accompanied with complete solutions and MATLAB applications. 
588 0 |a Print version record. 
504 |a Includes bibliographical references and index. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Data mining. 
650 0 |a Parallel processing (Electronic computers) 
650 0 |a Computer algorithms. 
650 0 |a Linear programming. 
650 2 |a Data Mining 
650 2 |a Algorithms 
650 2 |a Programming, Linear 
650 6 |a Exploration de données (Informatique) 
650 6 |a Parallélisme (Informatique) 
650 6 |a Algorithmes. 
650 6 |a Programmation linéaire. 
650 7 |a algorithms.  |2 aat 
650 7 |a COMPUTERS  |x Database Management  |x Data Mining.  |2 bisacsh 
650 7 |a COMPUTERS  |x Enterprise Applications  |x Business Intelligence Tools.  |2 bisacsh 
650 7 |a COMPUTERS  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Computer algorithms  |2 fast 
650 7 |a Data mining  |2 fast 
650 7 |a Linear programming  |2 fast 
650 7 |a Parallel processing (Electronic computers)  |2 fast 
776 0 8 |i Print version:  |a Simovici, Dan A.  |t Linear Algebra Tools for Data Mining.  |d Singapore : World Scientific, ©2012  |z 9789814383493 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=457172  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25565426 
938 |a Books 24x7  |b B247  |n bks00063235 
938 |a Coutts Information Services  |b COUT  |n 23981308 
938 |a EBL - Ebook Library  |b EBLB  |n EBL919074 
938 |a ebrary  |b EBRY  |n ebr10563563 
938 |a EBSCOhost  |b EBSC  |n 457172 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 364682 
938 |a YBP Library Services  |b YANK  |n 7651215 
994 |a 92  |b IZTAP