|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBSCO_ocn794328371 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
120528s2012 si ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d IDEBK
|d N$T
|d YDXCP
|d OCLCQ
|d OCLCO
|d CDX
|d OCLCF
|d B24X7
|d COO
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d E7B
|d I9W
|d OCLCQ
|d JBG
|d AGLDB
|d VGM
|d OTZ
|d LIV
|d OCLCQ
|d OCLCA
|d VTS
|d REC
|d OCLCQ
|d AU@
|d TKN
|d OCLCQ
|d STF
|d M8D
|d UKAHL
|d OCLCQ
|d EYM
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 794902750
|a 797852467
|a 817084882
|a 966358439
|a 995040230
|a 1058455785
|a 1086556051
|a 1181941465
|a 1264726290
|a 1297304287
|a 1297674036
|
020 |
|
|
|a 9789814383509
|q (electronic bk.)
|
020 |
|
|
|a 9814383503
|q (electronic bk.)
|
020 |
|
|
|a 1280669896
|
020 |
|
|
|a 9781280669897
|
020 |
|
|
|z 9789814383493
|
020 |
|
|
|z 981438349X
|
029 |
1 |
|
|a AU@
|b 000053310616
|
029 |
1 |
|
|a DEBBG
|b BV042961136
|
029 |
1 |
|
|a DEBSZ
|b 423765590
|
029 |
1 |
|
|a NZ1
|b 14690739
|
035 |
|
|
|a (OCoLC)794328371
|z (OCoLC)794902750
|z (OCoLC)797852467
|z (OCoLC)817084882
|z (OCoLC)966358439
|z (OCoLC)995040230
|z (OCoLC)1058455785
|z (OCoLC)1086556051
|z (OCoLC)1181941465
|z (OCoLC)1264726290
|z (OCoLC)1297304287
|z (OCoLC)1297674036
|
037 |
|
|
|a 919074
|b Proquest Ebook Central
|
050 |
|
4 |
|a QA76.9 .D343
|
072 |
|
7 |
|a UNF
|2 bicssc
|
072 |
|
7 |
|a COM
|x 021030
|2 bisacsh
|
072 |
|
7 |
|a COM
|x 005030
|2 bisacsh
|
072 |
|
7 |
|a COM
|x 004000
|2 bisacsh
|
082 |
0 |
4 |
|a 006.3
|a 006.312
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Simovici, Dan A.
|
245 |
1 |
0 |
|a Linear Algebra Tools for Data Mining.
|
260 |
|
|
|a Singapore :
|b World Scientific,
|c 2012.
|
300 |
|
|
|a 1 online resource (878 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
|
|a Preface; Contents; Part 1 Linear Algebra; 1. Modules and Linear Spaces; 1.1 Introduction; 1.2 Permutations; 1.3 Groups, Rings, and Fields; 1.4 Closure and Interior Systems; 1.5 Modules; 1.6 Linear Mappings; 1.7 Submodules; 1.8 Linear Combinations; 1.9 The Lattice of Submodules of a Module; 1.10 Linear Independence; 1.11 Linear Spaces; 1.12 Module Isomorphism Theorems; 1.13 Direct Sums and Direct Products; 1.14 Dual Modules and Linear Spaces; 1.15 Topological Linear Spaces; Exercises and Supplements; Bibliographical Comments; 2. Matrices; 2.1 Introduction; 2.2 Matrices with Arbitrary Elements.
|
505 |
8 |
|
|a 2.3 Rings and Matrices2.4 Special Classes of Matrices; 2.5 Complex Matrices; 2.6 Partitioned Matrices and Matrix Operations; 2.7 Invertible Matrices; 2.8 Matrices and Linear Transformations; 2.9 The Notion of Rank; 2.10 Matrix Similarity and Congruence; 2.11 Linear Systems and Matrices; 2.12 The Row Echelon Form of Matrices; 2.13 The Kronecker and Hadamard Products; 2.14 Linear Inequalities; 2.15 Complex Multilinear Forms; Exercises and Supplements; Bibliographical Comments; 3. MATLAB; 3.1 Introduction; 3.2 The Interactive Environment of MATLAB.
|
505 |
8 |
|
|a 3.3 Number Representation and Arithmetic Computations3.4 Matrices Representation; 3.5 Random Matrices; 3.6 Control Structures; 3.7 Indexing; 3.8 Functions; 3.9 Matrix Computations; Exercises and Supplements; Bibliographical Comments; 4. Determinants; 4.1 Introduction; 4.2 Multilinear Forms; 4.3 Cramer's Formula; 4.4 Partitioned Matrices and Determinants; MATLAB Computations; Exercises and Supplements; Bibliographical Comments; 5. Norms on Linear Spaces; 5.1 Introduction; 5.2 Fundamental Inequalities; 5.3 Metric Spaces; 5.4 Norms; 5.5 Vector Norms on Rn.
|
505 |
8 |
|
|a 5.6 The Topology of Normed Linear Spaces5.7 Norms for Matrices; 5.8 Matrix Sequences and Matrix Series; 5.9 Condition Numbers for Matrices; 5.10 Conjugate Norms; MATLAB Computations; Exercises and Supplements; Bibliographical Comments; 6. Inner Product Spaces; 6.1 Introduction; 6.2 Inner Products and Norms; 6.3 Orthogonality; 6.4 Hyperplanes in Rn; 6.5 Unitary and Orthogonal Matrices; 6.6 Projection on Subspaces; 6.7 Positive Definite and Positive Semidefinite Matrices; 6.8 The Gram-Schmidt Orthogonalization Algorithm; 6.9 The QR Factorization of Matrices; 6.10 Matrix Groups.
|
505 |
8 |
|
|a MATLAB ComputationsExercises and Supplements; Bibliographical Comments; 7. Convexity; 7.1 Introduction; 7.2 Convex Sets; 7.3 Separation of Convex Sets; 7.4 Cones in Rn; 7.5 Convex Functions; 7.6 Convexity and Inequalities; 7.7 Constrained Extrema and Convexity; Exercises and Supplements; Bibliographical Comments; 8. Eigenvalues; 8.1 Introduction; 8.2 Eigenvalues and Eigenvectors; 8.3 The Characteristic Polynomial of a Matrix; 8.4 Spectra of Special Matrices; 8.5 Geometry of Eigenvalues; 8.6 Spectra of Kronecker Products; 8.7 The Power Method for Eigenvalues; 8.8 The QR Iterative Algorithm.
|
500 |
|
|
|a MATLAB Computations.
|
520 |
|
|
|a This comprehensive volume presents the foundations of linear algebra ideas and techniques applied to data mining and related fields. Linear algebra has gained increasing importance in data mining and pattern recognition, as shown by the many current data mining publications, and has a strong impact in other disciplines like psychology, chemistry, and biology. The basic material is accompanied by more than 550 exercises and supplements, many accompanied with complete solutions and MATLAB applications.
|
588 |
0 |
|
|a Print version record.
|
504 |
|
|
|a Includes bibliographical references and index.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Data mining.
|
650 |
|
0 |
|a Parallel processing (Electronic computers)
|
650 |
|
0 |
|a Computer algorithms.
|
650 |
|
0 |
|a Linear programming.
|
650 |
|
2 |
|a Data Mining
|
650 |
|
2 |
|a Algorithms
|
650 |
|
2 |
|a Programming, Linear
|
650 |
|
6 |
|a Exploration de données (Informatique)
|
650 |
|
6 |
|a Parallélisme (Informatique)
|
650 |
|
6 |
|a Algorithmes.
|
650 |
|
6 |
|a Programmation linéaire.
|
650 |
|
7 |
|a algorithms.
|2 aat
|
650 |
|
7 |
|a COMPUTERS
|x Database Management
|x Data Mining.
|2 bisacsh
|
650 |
|
7 |
|a COMPUTERS
|x Enterprise Applications
|x Business Intelligence Tools.
|2 bisacsh
|
650 |
|
7 |
|a COMPUTERS
|x Intelligence (AI) & Semantics.
|2 bisacsh
|
650 |
|
7 |
|a Computer algorithms
|2 fast
|
650 |
|
7 |
|a Data mining
|2 fast
|
650 |
|
7 |
|a Linear programming
|2 fast
|
650 |
|
7 |
|a Parallel processing (Electronic computers)
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Simovici, Dan A.
|t Linear Algebra Tools for Data Mining.
|d Singapore : World Scientific, ©2012
|z 9789814383493
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=457172
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH25565426
|
938 |
|
|
|a Books 24x7
|b B247
|n bks00063235
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 23981308
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL919074
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10563563
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 457172
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 364682
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7651215
|
994 |
|
|
|a 92
|b IZTAP
|