|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
EBSCO_ocn776965767 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
100325s2008 enk o 001 0 eng d |
040 |
|
|
|a UkCbUP
|b eng
|e pn
|c AUD
|d OCLCO
|d OCLCQ
|d OCLCO
|d MHW
|d EBLCP
|d DEBSZ
|d OCLCQ
|d N$T
|d IDEBK
|d OCLCF
|d YDXCP
|d OCLCQ
|d N$T
|d OCLCQ
|d COO
|d AU@
|d UKAHL
|d OL$
|d OCLCQ
|d SFB
|d VHC
|d OCLCQ
|
019 |
|
|
|a 836864192
|a 1020584353
|a 1167557775
|a 1273998048
|a 1292399263
|a 1300652547
|a 1303411272
|
020 |
|
|
|a 9780511735233
|q (electronic bk.)
|
020 |
|
|
|a 0511735235
|q (electronic bk.)
|
020 |
|
|
|a 9781107362864
|q (electronic bk.)
|
020 |
|
|
|a 1107362865
|q (electronic bk.)
|
020 |
|
|
|z 9780521683722
|q (paperback)
|
020 |
|
|
|z 0521683726
|q (paperback)
|
020 |
|
|
|z 9781107367777
|
020 |
|
|
|z 1107367778
|
020 |
|
|
|a 1139882597
|
020 |
|
|
|a 9781139882590
|
020 |
|
|
|a 1107372313
|
020 |
|
|
|a 9781107372313
|
020 |
|
|
|a 0511970528
|
020 |
|
|
|a 9780511970528
|
020 |
|
|
|a 1299405371
|
020 |
|
|
|a 9781299405370
|
020 |
|
|
|a 1107365317
|
020 |
|
|
|a 9781107365315
|
029 |
1 |
|
|a AU@
|b 000055792465
|
029 |
1 |
|
|a DEBSZ
|b 382457501
|
029 |
1 |
|
|a AU@
|b 000070115332
|
035 |
|
|
|a (OCoLC)776965767
|z (OCoLC)836864192
|z (OCoLC)1020584353
|z (OCoLC)1167557775
|z (OCoLC)1273998048
|z (OCoLC)1292399263
|z (OCoLC)1300652547
|z (OCoLC)1303411272
|
050 |
|
4 |
|a QA331.7 .T73 2008
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515.9
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Transcendental Dynamics and Complex Analysis /
|c edited by Philip J. Rippon, Gwyneth M. Stallard.
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 2008.
|
300 |
|
|
|a 1 online resource (472 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society Lecture Note Series ;
|v no. 348
|
500 |
|
|
|a Title from publishers bibliographic system (viewed 22 Dec 2011).
|
520 |
|
|
|a In honour of Noel Baker, a leading exponent of transcendental complex dynamics, this book describes the state of the art in this subject.
|
505 |
0 |
|
|a Title; Copyright; Contents; Preface ; Introduction ; 1 Iteration of inner functions and boundaries of components of the Fatou set ; 1. INTRODUCTION; 2. ITERATION OF INNER FUNCTIONS; REFERENCES; 2 Conformal automorphisms of finitely connected regions ; 1. INTRODUCTION; 2. MÖBIUS MAPS; 3. REDUCTION TO GENERALIZED CIRCULAR REGIONS; 4. CONFORMALLY TRIVIAL GENERALIZED CIRCULAR REGIONS.
|
505 |
8 |
|
|a 5. THE REDUCTION TO CIRCULAR AND PUNCTURED SPHERES6. MÖBIUS EQUIVALENCE ANDINVERSIVE DISTANCE; 7. CIRCULATR REGIONS WITH CONNECTIVITY THREE; 8. CIRCULATR REGIONS WITH CONNECTIVITY FOUR; 9. THRICE-PUNCTURED SPHERES; 10. THE CROSS-RATIO FUNCTION; 11. CONFORMAL MöBIUS EQUIVALENCE AND CROSS-RATIOS ; 12. FOUR PUNCTURED SPHERES; 13. CONFORMALLY TRIVIAL PUNCTURED SPHERES ; 14. MÖBUS EQUIVALENCE AND ABSOLUTE CROSS-RATIOS; 15. THE INTERNAL DIRECT PRODUCT OF AUTOMORPHISMS; 16. A GEOMETRIC VIEW; REFERENCES.
|
505 |
8 |
|
|a 3 Meromorphic functions with two completely invariant domains 1. INTRODUCTION AND MAIN RESULT; 2. PROOF OF THE THEOREM; 3. EXAMPLES; REFERENCES; 4 A family of matings between transcendental entire functions and a Fuchsian group ; 1. THE GROUP T; 2. CORRESPONDENCES AND MATINGS; 3. A FAMILY OF CORRESPONDENCES; 4. TRANSCENDENTAL MATINGS; 5. DYNAMICS OF THE MAP æmR(z); 6. THE FATOU SET OF æmR; 7. CONJUGACIES ON ""TRUNCATED FILLED JULIA SETS""
|
505 |
8 |
|
|a 8. DYNAMICAL RAYS9. REMARKS AND GENERALISATIONS; REFERENCES; 5 Singular perturbations of zn ; 1. INTRODUCTION; 2. PRELIMINARIES; 3. THE ESCAPE TRICHOTOMY; 4. THE CASE n = d = 2; 5 .THE CASE n = 1; 6. BURIED SIERPINSKI CURVES; 7. SIERPINSKI GASKET-LIKE JULIA SETS; REFERENCES; 6 Residual Julia sets of rational and transcendental functions ; 1. INTRODUCTION; 2. BASIC PROPERTIES OF THE RESIDUAL JULIA SET; 3. THE RESIDUAL JULIA SET FOR RATIONAL FUNCTIONS.
|
505 |
8 |
|
|a 4. RESIDUAL JULIA SETS FOR TRANSCENDENTAL ENTIRE FUNCTIONS5. RESIDUAL JULIA SETS FOR TRANSCENDENTAL MEROMORPHIC FUNCTIONS; 6. HAIRS IN THE RESIDUAL JULIA SET; REFERENCES; 7 Bank-Laine functions via quasiconformal surgery ; 1. INTRODUCTION; 2. LEMMAS NEEDED FOR THEOREM 1.1; 3. PROOF OF THEOREM 1.1; 4. A RESULT NEEDED FOR THEOREM 1.2; 5. PROOF OF THEOREM 1.2; REFERENCES; 8 Generalisations of uniformly normal families ; 1. INTRODUCTION; 2. A SPECIAL CASE; 3. PROOF OF THEOREM 1.
|
504 |
|
|
|a Includes bibliographical references and index.
|
546 |
|
|
|a English.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Functions of complex variables.
|
650 |
|
0 |
|a Differentiable dynamical systems.
|
650 |
|
0 |
|a Mathematical analysis.
|
650 |
|
6 |
|a Fonctions d'une variable complexe.
|
650 |
|
6 |
|a Dynamique différentiable.
|
650 |
|
6 |
|a Analyse mathématique.
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Differentiable dynamical systems.
|2 fast
|0 (OCoLC)fst00893426
|
650 |
|
7 |
|a Functions of complex variables.
|2 fast
|0 (OCoLC)fst00936116
|
650 |
|
7 |
|a Mathematical analysis.
|2 fast
|0 (OCoLC)fst01012068
|
700 |
1 |
|
|a Rippon, Philip J.
|
700 |
1 |
|
|a Stallard, Gwyneth M.
|
776 |
0 |
8 |
|i Print version:
|z 9780521683722
|
830 |
|
0 |
|a London Mathematical Society lecture note series ;
|v no. 348.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552370
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH13431056
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH26385126
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1182559
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 552370
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis25154631
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10689781
|
994 |
|
|
|a 92
|b IZTAP
|