Cargando…

Regression for categorical data /

"Categorical data play an important role in many statistical analyses. They appear whenever the outcomes of one or more categorical variables are observed. A categorical variable can be seen as a variable for which the possible values form a set of categories, which can be finite or, in the cas...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Tutz, Gerhard
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 2012.
Colección:Cambridge series on statistical and probabilistic mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn773034250
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 120117s2012 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d YDXCP  |d OCLCQ  |d DEBSZ  |d CAMBR  |d OCLCQ  |d CHVBK  |d EBLCP  |d CDX  |d IDEBK  |d OL$  |d OCLCQ  |d OCLCF  |d OCLCQ  |d OTZ  |d OCLCQ  |d BUF  |d OCLCQ  |d OCLCO  |d OCLCQ  |d INT  |d OCLCQ  |d U3W  |d OCLCQ  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 775420227  |a 778619737  |a 782877081  |a 817928050  |a 853661183  |a 990465572  |a 995021751  |a 1064204879 
020 |a 9781139128551  |q (electronic bk.) 
020 |a 1139128558  |q (electronic bk.) 
020 |a 9781139115728 
020 |a 1139115723 
020 |a 9780511842061  |q (electronic bk.) 
020 |a 0511842066  |q (electronic bk.) 
020 |a 9781139117890 
020 |a 1139117890 
020 |z 9781107009653 
020 |z 1107009650 
024 8 |a 9786613382405 
029 1 |a AU@  |b 000052898174 
029 1 |a AU@  |b 000057030183 
029 1 |a CHNEW  |b 000618250 
029 1 |a DEBSZ  |b 372890369 
029 1 |a DEBSZ  |b 379325047 
029 1 |a DEBSZ  |b 445572698 
035 |a (OCoLC)773034250  |z (OCoLC)775420227  |z (OCoLC)778619737  |z (OCoLC)782877081  |z (OCoLC)817928050  |z (OCoLC)853661183  |z (OCoLC)990465572  |z (OCoLC)995021751  |z (OCoLC)1064204879 
037 |a 338240  |b MIL 
050 4 |a QA278.2  |b .T88 2012eb 
072 7 |a MAT  |x 029030  |2 bisacsh 
072 7 |a PBT  |2 bicssc 
082 0 4 |a 519.5/36  |2 22 
049 |a UAMI 
100 1 |a Tutz, Gerhard. 
245 1 0 |a Regression for categorical data /  |c Gerhard Tutz. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2012. 
300 |a 1 online resource (x, 561 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Cambridge series in statistical and probabilistic mathematics 
504 |a Includes bibliographical references and indexes. 
520 |a "Categorical data play an important role in many statistical analyses. They appear whenever the outcomes of one or more categorical variables are observed. A categorical variable can be seen as a variable for which the possible values form a set of categories, which can be finite or, in the case of count data, infinite. These categories can be records of answers (yes/no) in a questionnaire, diagnoses like normal/abnormal resulting from a medical examination or choices of brands in consumer behaviour. Data of this type are common in all sciences that use quantitative research tools, for example social sciences, economics, biology, genetics and medicine, but also engineering and agriculture. In some applications all of the observed variables are categorical and the resulting data can be summarized in contingency tables which contain the counts for combinations of possible outcomes. In other applications categorical data are collected together with continuous variables and one wants to investigate the dependence of one or more categorical variables on continuous and/or categorical variables"--  |c Provided by publisher 
588 0 |a Print version record. 
505 0 |a ch. 1 Introduction -- 1.1 Categorical Data: Examples and Basic Concepts -- 1.1.1 Some Examples -- 1.1.2 Classification of Variables -- Scale Levels: Nominal and Ordinal Variables -- Discrete and Continuous Variables -- 1.2 Organization of This Book -- 1.3 Basic Components of Structured Regression -- 1.3.1 Structured Univariate Regression -- Structuring the Dependent Variable -- Structuring the Influential Term -- Linear Predictor -- Categorical Explanatory Variables -- Additive Predictor -- Tree-Based Methods -- The Link between Covariates and Response1.3.2 Structured Multicategorical Regression -- 1.3.3 Multivariate Regression -- Structuring the Dependent Variables -- Structuring the Influential Term -- 1.3.4 Statistical Modeling -- 1.4 Classical Linear Regression -- 1.4.1 Interpretation and Coding of Covariates -- Quantitative Explanatory Variables -- Binary Explanatory Variables -- Multicategorical Explanatory Variables or Factors -- 1.4.2 Linear Regression in Matrix Notation -- 1.4.3 Estimation -- Least-Squares Estimation -- Maximum Likelihood Estimation -- Properties of Estimates -- 1.4.4 Residuals and Hat Matrix -- Case Deletion as Diagnostic Tool1.4.5 Decomposition of Variance and Coefficient of Determination -- 1.4.6 Testing in Multiple Linear Regression -- Submodels and the Testing of Linear Hypotheses -- 1.5 Exercises -- ch. 2 Binary Regression: The Logit Model -- 2.1 Distribution Models for Binary Responses and Basic Concepts -- 2.1.1 Single Binary Variables -- 2.1.2 The Binomial Distribution -- Odds, Logits, and Odds Ratios -- Comparing Two Groups -- 2.2 Linking Response and Explanatory Variables -- 2.2.1 Deficiencies of Linear Models -- 2.2.2 Modeling Binary Responses -- Binary Responses as Dichotomized Latent VariablesModeling the Common Distribution of a Binary and a Continuous Distribution -- Basic Form of Binary Regression Models -- 2.3 The Logit Model -- 2.3.1 Model Representations -- 2.3.2 Logit Model with Continuous Predictor -- Multivariate Predictor -- 2.3.3 Logit Model with Binary Predictor -- Logit Model with (0-1)-Coding of Covariates -- Logit Model with Effect Coding -- 2.3.4 Logit Model with Categorical Predictor -- Logit Model with (0-1)-Coding -- Logit Model with Effect Coding -- Logit Model with Several Categorical Predictors -- 2.3.5 Logit Model with Linear Predictor -- 2.4 The Origins of the Logistic Function and the Logit Model2.5 Exercises -- ch. 3 Generalized Linear Models -- 3.1 Basic Structure -- 3.2 Generalized Linear Models for Continuous Responses -- 3.2.1 Normal Linear Regression -- 3.2.2 Exponential Distribution -- 3.2.3 Gamma-Distributed Responses -- 3.2.4 Inverse Gaussian Distribution -- 3.3 GLMs for Discrete Responses -- 3.3.1 Models for Binary Data -- 3.3.2 Models for Binomial Data -- 3.3.3 Poisson Model for Count Data -- 3.3.4 Negative Binomial Distribution -- 3.4 Further Concepts -- 3.4.1 Means and Variances -- 3.4.2 Canonical Link -- 3.4.3 Extensions Including Offsets. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Regression analysis. 
650 0 |a Categories (Mathematics) 
650 2 |a Regression Analysis 
650 6 |a Analyse de régression. 
650 6 |a Catégories (Mathématiques) 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x Regression Analysis.  |2 bisacsh 
650 7 |a Categories (Mathematics)  |2 fast 
650 7 |a Regression analysis  |2 fast 
650 7 |a Kategoriale Daten  |2 gnd 
650 7 |a Regressionsanalyse  |2 gnd 
776 0 8 |i Print version:  |a Tutz, Gerhard.  |t Regression for categorical data.  |d Cambridge ; New York : Cambridge University Press, 2012  |z 9781107009653  |w (DLC) 2011000390  |w (OCoLC)700468349 
830 0 |a Cambridge series on statistical and probabilistic mathematics. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=408863  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH21918542 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37562435 
938 |a Coutts Information Services  |b COUT  |n 20464932 
938 |a EBL - Ebook Library  |b EBLB  |n EBL807338 
938 |a ebrary  |b EBRY  |n ebr10521016 
938 |a EBSCOhost  |b EBSC  |n 408863 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 338240 
938 |a YBP Library Services  |b YANK  |n 9247808 
938 |a YBP Library Services  |b YANK  |n 7309874 
938 |a YBP Library Services  |b YANK  |n 7408033 
938 |a YBP Library Services  |b YANK  |n 7571800 
994 |a 92  |b IZTAP