Cargando…

Forcing with Random Variables and Proof Complexity.

A model-theoretic approach to bounded arithmetic and propositional proof complexity.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Krajícek, Jan
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2010.
Colección:London Mathematical Society Lecture Note Series, 382.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBSCO_ocn769341802
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 111226s2010 enk ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d IDEBK  |d CUY  |d OCLCQ  |d OCLCO  |d DEBSZ  |d OCLCQ  |d OCLCO  |d OCLCF  |d N$T  |d CDX  |d YDXCP  |d E7B  |d REDDC  |d CAMBR  |d OCLCQ  |d LUN  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 759007187  |a 771910411  |a 817914316  |a 1167197724  |a 1264731639 
020 |a 9781139117333 
020 |a 1139117335 
020 |a 9781139127998  |q (electronic bk.) 
020 |a 1139127993  |q (electronic bk.) 
020 |a 9781139115162 
020 |a 1139115162 
020 |a 9781139107211  |q (electronic bk.) 
020 |a 1139107216  |q (electronic bk.) 
020 |z 9780521154338 
020 |z 0521154332 
024 8 |a 9786613296108 
029 1 |a AU@  |b 000057022698 
029 1 |a DEBSZ  |b 372879500 
029 1 |a DEBSZ  |b 379323508 
035 |a (OCoLC)769341802  |z (OCoLC)759007187  |z (OCoLC)771910411  |z (OCoLC)817914316  |z (OCoLC)1167197724  |z (OCoLC)1264731639 
037 |a 329610  |b MIL 
050 4 |a QA267.7 .K73 2011 
072 7 |a MAT  |x 016000  |2 bisacsh 
072 7 |a MAT  |x 018000  |2 bisacsh 
082 0 4 |a 511.36 
049 |a UAMI 
100 1 |a Krajícek, Jan. 
245 1 0 |a Forcing with Random Variables and Proof Complexity. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2010. 
300 |a 1 online resource (266 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society Lecture Note Series, 382 ;  |v v. 382 
505 0 |a Cover; Title; Copyright; Dedication; Contents; Preface; Acknowledgment; Introduction; Organization of the book; Remarks on the literature; Background; Part I Basics; 1 The definition of the models; 1.1 The ambient model of arithmetic; 1.2 The Boolean algebras; 1.3 The models K(F); 1.4 Valid sentences; 1.5 Possible generalizations; 2 Measure on B; 2.1 A metric on B; 2.2 From Boolean value to probability; 3 Witnessing quantifiers; 3.1 Propositional approximation of truth values; 3.2 Witnessing in definable families; 3.3 Definition by cases by open formulas; 3.4 Compact families. 
505 8 |a 3.5 Propositional computation of truth values4 The truth in N and the validity in K(F); Part II Second-order structures; 5 Structures K(F, G); 5.1 Language L2 and the hierarchy of bounded formulas; 5.2 Cut Mn, languages Ln and L2n; 5.3 Definition of the structures; 5.4 Equality of functions, extensionality and possible generalizations; 5.5 Absoluteness of ASb8-sentences of language Ln; Part III AC0 world; 6 Theories I?0, I?0(R) and V01; 7 Shallow Boolean decision tree model; 7.1 Family Frud; 7.2 Family Grud; 7.3 Properties of Frud and Grud; 8 Open comprehension and open induction. 
505 8 |a 8.1 The ((. . .)) notation8.2 Open comprehension in K(Frud, Grud); 8.3 Open induction in K(Frud, Grud); 8.4 Short open induction; 9 Comprehension and induction via quantifier elimination; 9.1 Bounded quantifier elimination; 9.2 Skolem functions in K(F, G) and quantifierelimination; 9.3 Comprehension and induction for S01,b-formulas; 10 Skolem functions, switching lemma; 10.1 Switching lemma; 10.2 Tree model K(Ftree, Gtree); 11 Quantifier elimination in K(Ftree, Gtree); 11.1 Skolem functions; 11.2 Comprehension and induction for S01,b-formulas. 
505 8 |a 12 Witnessing, independence and definability in V0112.1 Witnessing AX <x EY <x S01,b-formulas; 12.2 Preservation of true sp11,b-sentences; 12.3 Circuit lower bound for parity; Part IV AC0(2) world; 13 Theory Q2V01; 13.1 Q2 quantifier and theory Q2V01; 13.2 Interpreting Q2 in structures; 14 Algebraic model; 14.1 Family Falg; 14.2 Family Galg; 14.3 Open comprehension and open induction; 15 Quantifier elimination and the interpretation of Q2; 15.1 Skolemization and the Razborov -- Smolensky method; 15.2 Interpretation of Q2 in front of an open formula. 
505 8 |a 15.3 Elimination of quantifiers and the interpretation of the Q2 quantifier15.4 Comprehension and induction for Q21,b0-formulas; 16 Witnessing and independence in Q2V01; 16.1 Witnessing AX <xEY <xA Z <xS01,b-formulas; 16.2 Preservation of true sp11,b-sentences; Part V Towards proof complexity; 17 Propositional proof systems; 17.1 Frege and Extended Frege systems; 17.2 Language with connective and constant-depth Frege systems; 18 Lengths-of-proofs lower bounds; 18.1 Formalization of the provability predicate; 18.2 Reflection principles; 18.3 Three conditions for a lower bound. 
500 |a 19 PHP principle. 
520 |a A model-theoretic approach to bounded arithmetic and propositional proof complexity. 
588 0 |a Print version record. 
504 |a Includes bibliographical references (pages 236-242) and indexes. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Computational complexity. 
650 0 |a Random variables. 
650 0 |a Mathematical analysis. 
650 6 |a Complexité de calcul (Informatique) 
650 6 |a Variables aléatoires. 
650 6 |a Analyse mathématique. 
650 7 |a MATHEMATICS  |x Infinity.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Logic.  |2 bisacsh 
650 7 |a Computational complexity.  |2 fast  |0 (OCoLC)fst00871991 
650 7 |a Mathematical analysis.  |2 fast  |0 (OCoLC)fst01012068 
650 7 |a Random variables.  |2 fast  |0 (OCoLC)fst01089812 
776 0 8 |i Print version:  |a Krajícek, Jan.  |t Forcing with Random Variables and Proof Complexity.  |d Cambridge : Cambridge University Press, ©2010  |z 9780521154338 
830 0 |a London Mathematical Society Lecture Note Series, 382. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399278  |z Texto completo 
938 |a Coutts Information Services  |b COUT  |n 19724670 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL775090 
938 |a ebrary  |b EBRY  |n ebr10502652 
938 |a EBSCOhost  |b EBSC  |n 399278 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 329610 
938 |a YBP Library Services  |b YANK  |n 7236512 
938 |a YBP Library Services  |b YANK  |n 7205463 
938 |a YBP Library Services  |b YANK  |n 7302907 
938 |a YBP Library Services  |b YANK  |n 7365720 
994 |a 92  |b IZTAP