|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBSCO_ocn769341761 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
111226s2011 enk ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d DEBSZ
|d IDEBK
|d OL$
|d OCLCO
|d OCLCQ
|d OCLCO
|d CDX
|d OCLCF
|d N$T
|d E7B
|d YDXCP
|d UIU
|d REDDC
|d CAMBR
|d OSU
|d OCLCQ
|d UAB
|d OCLCQ
|d INT
|d AU@
|d OCLCQ
|d UKAHL
|d OCLCO
|d OCLCQ
|d OCLCO
|
066 |
|
|
|c (S
|
019 |
|
|
|a 759007197
|a 761284104
|a 768771958
|a 816866945
|a 819630810
|a 853654206
|a 1178961534
|
020 |
|
|
|a 9781139117487
|
020 |
|
|
|a 1139117483
|
020 |
|
|
|a 1283296179
|
020 |
|
|
|a 9781283296175
|
020 |
|
|
|a 9780511751677
|q (electronic book)
|
020 |
|
|
|a 0511751672
|q (electronic book)
|
020 |
|
|
|a 9781139128148
|q (electronic bk.)
|
020 |
|
|
|a 1139128140
|q (electronic bk.)
|
020 |
|
|
|a 1139115316
|q (electronic bk.)
|
020 |
|
|
|a 9781139115315
|q (electronic bk.)
|
020 |
|
|
|z 0521175615
|
020 |
|
|
|z 9780521175616
|
020 |
|
|
|a 9781139113120
|q (e-book)
|
020 |
|
|
|a 1139113127
|
029 |
1 |
|
|a AU@
|b 000059646430
|
029 |
1 |
|
|a DEBSZ
|b 372879519
|
029 |
1 |
|
|a DEBSZ
|b 379323370
|
029 |
1 |
|
|a AU@
|b 000057022697
|
035 |
|
|
|a (OCoLC)769341761
|z (OCoLC)759007197
|z (OCoLC)761284104
|z (OCoLC)768771958
|z (OCoLC)816866945
|z (OCoLC)819630810
|z (OCoLC)853654206
|z (OCoLC)1178961534
|
050 |
|
4 |
|a QA406 .M37 2011
|
072 |
|
7 |
|a PBT
|2 bicssc
|
072 |
|
7 |
|a SCI
|x 015000
|2 bisacsh
|
082 |
0 |
4 |
|a 523.101/5195
|
084 |
|
|
|a MAT029000
|2 bisacsh
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Marinucci, Domenico.
|
245 |
1 |
0 |
|a Random Fields on the Sphere :
|b Representation, Limit Theorems and Cosmological Applications.
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 2011.
|
300 |
|
|
|a 1 online resource (355 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society Lecture Note Series, 389 ;
|v v. 389
|
505 |
0 |
|
|6 880-01
|a Cover; Title; Copyright; Contents; Dedication; Preface; 1 Introduction; 1.1 Overview; 1.2 Cosmological motivations; 1.3 Mathematical framework; 1.4 Plan of the book; 2 Background Results in Representation Theory; 2.1 Introduction; 2.2 Preliminary remarks; 2.3 Groups: basic definitions; 2.3.1 First definitions and examples; 2.3.2 Cosets and quotients; 2.3.3 Actions; 2.4 Representations of compact groups; 2.4.1 Basic definitions; 2.4.2 Group representations and Schur Lemma; 2.4.3 Direct sum and tensor product representations; 2.4.4 Orthogonality relations; 2.5 The Peter-Weyl Theorem.
|
505 |
8 |
|
|a 3 Representations of SO(3) and Harmonic Analysis on S23.1 Introduction; 3.2 Euler angles; 3.2.1 Euler angles for SU(2); 3.2.2 Euler angles for SO(3); 3.3 Wigner's D matrices; 3.3.1 A family of unitary representations of SU(2); 3.3.2 Expressions in terms of Euler angles and irreducibility; 3.3.3 Further properties; 3.3.4 The dual of SO(3); 3.4 Spherical harmonics and Fourier analysis on S2; 3.4.1 Spherical harmonics and Wigner's Dl matrices; 3.4.2 Some properties of spherical harmonics; 3.4.3 An alternative characterization of spherical harmonics; 3.5 The Clebsch-Gordan coefficients.
|
505 |
8 |
|
|a 3.5.1 Clebsch-Gordan matrices3.5.2 Integrals of multiple spherical harmonics; 3.5.3 Wigner 3 j coefficients; 4 Background Results in Probability and Graphical Methods; 4.1 Introduction; 4.2 Brownian motion and stochastic calculus; 4.3 Moments, cumulants and diagram formulae; 4.4 The simplified method of moments on Wiener chaos; 4.4.1 Real kernels; 4.4.2 Further results on complex kernels; 4.5 The graphical method for Wigner coefficients; 4.5.1 From diagrams to graphs; 4.5.2 Further notation; 4.5.3 First example: sums of squares; 4.5.4 Cliques and Wigner 6 j coefficients.
|
505 |
8 |
|
|a 4.5.5 Rule n. 1: loops are zero4.5.6 Rule n. 2: paired sums are one; 4.5.7 Rule n. 3: 2-loops can be cut, and leave a factor; 4.5.8 Rule n. 4: three-loops can be cut, and leave a clique; 5 Spectral Representations; 5.1 Introduction; 5.2 The Stochastic Peter-Weyl Theorem; 5.2.1 General statements; 5.2.2 Decompositions on the sphere; 5.3 Weakly stationary random fields in Rm; 5.4 Stationarity and weak isotropy in R3; 6 Characterizations of Isotropy; 6.1 Introduction; 6.2 First example: the cyclic group; 6.3 The spherical harmonics coefficients; 6.4 Group representations and polyspectra.
|
505 |
8 |
|
|a 6.5 Angular polyspectra and the structure of?l1 ... ln6.5.1 Spectra of strongly isotropic fields; 6.5.2 The structure of?l1 ... ln; 6.6 Reduced polyspectra of arbitrary orders; 6.7 Some examples; 7 Limit Theorems for Gaussian Subordinated Random Fields; 7.1 Introduction; 7.2 First example: the circle; 7.3 Preliminaries on Gaussian-subordinated fields; 7.4 High-frequency CLTs; 7.4.1 Hermite subordination; 7.5 Convolutions and random walks; 7.5.1 Convolutions on?SO (3); 7.5.2 The cases q = 2 and q = 3; 7.5.3 The case of a general q: results and conjectures; 7.6 Further remarks.
|
500 |
|
|
|a 7.6.1 Convolutions as mixed states.
|
520 |
|
|
|a Reviews recent developments in the analysis of isotropic spherical random fields, with a view towards applications in cosmology.
|
588 |
0 |
|
|a Print version record.
|
504 |
|
|
|a Includes bibliographical references (pages 326-337) and index.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Compact groups.
|
650 |
|
0 |
|a Cosmology
|x Statistical methods.
|
650 |
|
0 |
|a Random fields.
|
650 |
|
0 |
|a Spherical harmonics.
|
650 |
|
6 |
|a Groupes compacts.
|
650 |
|
6 |
|a Cosmologie
|x Méthodes statistiques.
|
650 |
|
6 |
|a Champs aléatoires.
|
650 |
|
6 |
|a Harmoniques sphériques.
|
650 |
|
7 |
|a MATHEMATICS
|x Probability & Statistics
|x General.
|2 bisacsh
|
650 |
|
7 |
|a SCIENCE
|x Cosmology.
|2 bisacsh
|
650 |
|
7 |
|a Compact groups
|2 fast
|
650 |
|
7 |
|a Random fields
|2 fast
|
650 |
|
7 |
|a Spherical harmonics
|2 fast
|
700 |
1 |
|
|a Peccati, Giovanni,
|d 1975-
|
776 |
0 |
8 |
|i Print version:
|a Marinucci, Domenico.
|t Random Fields on the Sphere : Representation, Limit Theorems and Cosmological Applications.
|d Cambridge : Cambridge University Press, ©2011
|z 9780521175616
|
830 |
|
0 |
|a London Mathematical Society Lecture Note Series, 389.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399346
|z Texto completo
|
880 |
0 |
0 |
|6 505-01/(S
|g Machine generated contents note:
|g 1.
|t Introduction --
|g 1.1.
|t Overview --
|g 1.2.
|t Cosmological motivations --
|g 1.3.
|t Mathematical framework --
|g 1.4.
|t Plan of the book --
|g 2.
|t Background Results in Representation Theory --
|g 2.1.
|t Introduction --
|g 2.2.
|t Preliminary remarks --
|g 2.3.
|t Groups: basic definitions --
|g 2.4.
|t Representations of compact groups --
|g 2.5.
|t Peter-Weyl Theorem --
|g 3.
|t Representations of SO(3) and Harmonic Analysis on S2 --
|g 3.1.
|t Introduction --
|g 3.2.
|t Euler angles --
|g 3.3.
|t Wigner's D matrices --
|g 3.4.
|t Spherical harmonics and Fourier analysis on S2 --
|g 3.5.
|t Clebsch-Gordan coefficients --
|g 4.
|t Background Results in Probability and Graphical Methods --
|g 4.1.
|t Introduction --
|g 4.2.
|t Brownian motion and stochastic calculus --
|g 4.3.
|t Moments, cumulants and diagram formulae --
|g 4.4.
|t simplified method of moments on Wiener chaos --
|g 4.5.
|t graphical method for Wigner coefficients --
|g 5.
|t Spectral Representations --
|g 5.1.
|t Introduction --
|g 5.2.
|t Stochastic Peter-Weyl Theorem --
|g 5.3.
|t Weakly stationary random fields in Rm --
|g 5.4.
|t Stationarity and weak isotropy in R3 --
|g 6.
|t Characterizations of Isotropy --
|g 6.1.
|t Introduction --
|g 6.2.
|t First example: the cyclic group --
|g 6.3.
|t spherical harmonics coefficients --
|g 6.4.
|t Group representations and polyspectra --
|g 6.5.
|t Angular polyspectra and the structure of δl1 ... l1 --
|g 6.6.
|t Reduced polyspectra of arbitrary orders --
|g 6.7.
|t Some examples --
|g 7.
|t Limit Theorems for Gaussian Subordinated Random Fields --
|g 7.1.
|t Introduction --
|g 7.2.
|t First example: the circle --
|g 7.3.
|t Preliminaries on Gaussian-subordinated fields --
|g 7.4.
|t High-frequency CLTs --
|g 7.5.
|t Convolutions and random walks --
|g 7.6.
|t Further remarks --
|g 7.7.
|t Application: algebraic/exponential dualities --
|g 8.
|t Asymptotics for the Sample Power Spectrum --
|g 8.1.
|t Introduction --
|g 8.2.
|t Angular power spectrum estimation --
|g 8.3.
|t Interlude: some practical issues --
|g 8.4.
|t Asymptotics in the non-Gaussian case --
|g 8.5.
|t quadratic case --
|g 8.6.
|t Discussion --
|g 9.
|t Asymptotics for Sample Bispectra --
|g 9.1.
|t Introduction --
|g 9.2.
|t Sample bispectra --
|g 9.3.
|t central limit theorem --
|g 9.4.
|t Limit theorems under random normalizations --
|g 9.5.
|t Testing for non-Gaussianity --
|g 10.
|t Spherical Needlets and their Asymptotic Properties --
|g 10.1.
|t Introduction --
|g 10.2.
|t construction of spherical needlets --
|g 10.3.
|t Properties of spherical needlets --
|g 10.4.
|t Stochastic properties of needlet coefficients --
|g 10.5.
|t Missing observations --
|g 10.6.
|t Mexican needlets --
|g 11.
|t Needlets Estimation of Power Spectrum and Bispectrum --
|g 11.1.
|t Introduction --
|g 11.2.
|t general convergence result --
|g 11.3.
|t Estimation of the angular power spectrum --
|g 11.4.
|t functional central limit theorem --
|g 11.5.
|t central limit theorem for the needlets bispectrum --
|g 12.
|t Spin Random Fields --
|g 12.1.
|t Introduction --
|g 12.2.
|t Motivations --
|g 12.3.
|t Geometric background --
|g 12.4.
|t Spin needlets and spin random fields --
|g 12.5.
|t Spin needlets spectral estimator --
|g 12.6.
|t Detection of asymmetries --
|g 12.7.
|t Estimation with noise --
|g 13.
|t Appendix --
|g 13.1.
|t Orthogonal polynomials --
|g 13.2.
|t Spherical harmonics and their analytic properties --
|g 13.3.
|t proof of needlets' localization.
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH13431315
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 19724677
|c 40.00 GBP
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL775025
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10502831
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 399346
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 329617
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7166957
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7205477
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7302921
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7319595
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH28322216
|
994 |
|
|
|a 92
|b IZTAP
|