Cargando…

Functional estimation for density, regression models and processes /

This book presents a unified approach on nonparametric estimators for models of independent observations, jump processes and continuous processes. New estimators are defined and their limiting behavior is studied. From a practical point of view, the book expounds on the construction of estimators fo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pons, Odile
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific, ©2011.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn754793520
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 110927s2011 si ob 001 0 eng d
010 |z  2011377673 
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d YDXCP  |d I9W  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d NLGGC  |d OCLCQ  |d OCLCF  |d OCLCQ  |d AZK  |d AGLDB  |d PIFAG  |d OCLCQ  |d JBG  |d OCLCQ  |d NJR  |d U3W  |d OCLCQ  |d STF  |d WRM  |d OCLCQ  |d VTS  |d COCUF  |d NRAMU  |d INT  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d LEAUB  |d UKAHL  |d VLY  |d OCLCQ  |d OCLCO  |d SFB  |d OCLCO  |d OCLCQ  |d INARC  |d OCLCO 
019 |a 961512613  |a 962578718  |a 1162553226  |a 1241880418  |a 1290078953  |a 1300646294 
020 |a 9789814343749  |q (electronic bk.) 
020 |a 9814343749  |q (electronic bk.) 
020 |a 1283235048 
020 |a 9781283235044 
020 |a 9786613235046 
020 |a 6613235040 
020 |z 9789814343732 
020 |z 9814343730 
029 1 |a AU@  |b 000051567128 
029 1 |a CHNEW  |b 000602871 
029 1 |a DEBBG  |b BV043107348 
029 1 |a DEBSZ  |b 372809758 
029 1 |a DEBSZ  |b 421539402 
029 1 |a HEBIS  |b 299830039 
029 1 |a NZ1  |b 14256911 
029 1 |a AU@  |b 000073139210 
035 |a (OCoLC)754793520  |z (OCoLC)961512613  |z (OCoLC)962578718  |z (OCoLC)1162553226  |z (OCoLC)1241880418  |z (OCoLC)1290078953  |z (OCoLC)1300646294 
050 4 |a QA276.8  |b .P66 2011eb 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.544  |2 22 
049 |a UAMI 
100 1 |a Pons, Odile. 
245 1 0 |a Functional estimation for density, regression models and processes /  |c Odile Pons. 
260 |a Singapore :  |b World Scientific,  |c ©2011. 
300 |a 1 online resource (ix, 199 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
504 |a Includes bibliographical references (pages 191-196) and index. 
588 0 |a Print version record. 
505 0 |a 1. Introduction. 1.1. Estimation of a density. 1.2. Estimation of a regression curve. 1.3. Estimation of functionals of processes. 1.4. Content of the book -- 2. Kernel estimator of a density. 2.1. Introduction. 2.2. Risks and optimal bandwidths for the kernel estimator. 2.3. Weak convergence. 2.4. Minimax and histogram estimators. 2.5. Estimation of functionals of a density. 2.6. Density of absolutely continuous distributions. 2.7. Hellinger distance between a density and its estimator. 2.8. Estimation of the density under right-censoring. 2.9. Estimation of the density of left-censored variables. 2.10. Kernel estimator for the density of a process. 2.11. Exercises -- 3. Kernel estimator of a regression function. 3.1. Introduction and notation. 3.2. Risks and convergence rates for the estimator. 3.3. Optimal bandwidths. 3.4. Weak convergence of the estimator. 3.5. Estimation of a regression curve by local polynomials. 3.6. Estimation in regression models with functional variance. 3.7. Estimation of the mode of a regression function. 3.8. Estimation of a regression function under censoring. 3.9. Proportional odds model. 3.10. Estimation for the regression function of processes. 3.11. Exercises -- 4. Limits for the varying bandwidths estimators. 4.1. Introduction. 4.2. Estimation of densities. 4.3. Estimation of regression functions. 4.4. Estimation for processes. 4.5. Exercises -- 5. Nonparametric estimation of quantiles. 5.1. Introduction. 5.2. Asymptotics for the quantile processes. 5.3. Bandwidth selection. 5.4. Estimation of the conditional density of Y given X. 5.5. Estimation of conditional quantiles for processes. 5.6. Inverse of a regression function. 5.7. Quantile function of right-censored variables. 5.8. Conditional quantiles with variable bandwidth. 5.9. Exercises -- 6. Nonparametric estimation of intensities for stochastic processes. 6.2. Introduction. 6.2. Risks and convergences for estimators of the intensity. 6.3. Risks and convergences for multiplicative intensities. 6.4. Histograms for intensity and regression functions. 6.5. Estimation of the density of duration excess. 6.6. Estimators for processes on increasing intervals. 6.7. Models with varying intensity or regression coefficients. 6.8. Progressive censoring of a random time sequence. 6.9. Exercises -- 7. Estimation in semi-parametric regression models. 7.1. Introduction. 7.2. Convergence of the estimators. 7.3. Nonparametric regression with a change of variables. 7.4. Exercises -- 8. Diffusion processes. 8.1. Introduction. 8.2. Estimation for continuous diffusions by discretization. 8.3. Estimation for continuous diffusion processes. 8.4. Estimation of discretely observed diffusions with jumps. 8.5. Continuous estimation for diffusions with jumps. 8.6. Transformations of a non-stationary Gaussian process. 8.7. Exercises -- 9. Applications to time series. 9.1. Nonparametric estimation of the mean. 9.2. Periodic models for time series. 9.3. Nonparametric estimation of the covariance function. 9.4. Nonparametric transformations for stationarity. 9.5. Change-points in time series. 9.6. Exercises. 
520 |a This book presents a unified approach on nonparametric estimators for models of independent observations, jump processes and continuous processes. New estimators are defined and their limiting behavior is studied. From a practical point of view, the book expounds on the construction of estimators for functionals of processes and densities, and provides asymptotic expansions and optimality properties from smooth estimators. It also presents new regular estimators for functionals of processes, compares histogram and kernel estimators, compares several new estimators for single-index models, and it examines the weak convergence of the estimators. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Estimation theory. 
650 0 |a Nonparametric statistics. 
650 2 |a Statistics, Nonparametric 
650 6 |a Théorie de l'estimation. 
650 6 |a Statistique non paramétrique. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Estimation theory  |2 fast 
650 7 |a Nonparametric statistics  |2 fast 
776 0 8 |i Print version:  |a Pons, Odile.  |t Functional estimation for density, regression models and processes.  |d Singapore : World Scientific, ©2011  |z 9789814343732  |w (OCoLC)694395311 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=389633  |z Texto completo 
938 |a Internet Archive  |b INAR  |n functionalestima0000pons 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25565342 
938 |a ebrary  |b EBRY  |n ebr10493494 
938 |a EBSCOhost  |b EBSC  |n 389633 
938 |a YBP Library Services  |b YANK  |n 7135087 
994 |a 92  |b IZTAP