|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
EBSCO_ocn754793038 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr mnu---unuuu |
008 |
110927s2011 nju ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d YDXCP
|d OSU
|d E7B
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d NLGGC
|d OCLCQ
|d OCLCF
|d OCLCQ
|d LOA
|d AGLDB
|d MOR
|d PIFAG
|d OCLCQ
|d JBG
|d U3W
|d STF
|d WRM
|d VTS
|d COCUF
|d NRAMU
|d INT
|d OCLCQ
|d ICG
|d TKN
|d OCLCQ
|d LEAUB
|d UKAHL
|d OCLCO
|d OCLCQ
|
020 |
|
|
|a 9789814324595
|q (electronic bk.)
|
020 |
|
|
|a 9814324590
|q (electronic bk.)
|
020 |
|
|
|z 9789814324588
|
020 |
|
|
|z 9814324582
|
029 |
1 |
|
|a AU@
|b 000051431493
|
029 |
1 |
|
|a DEBBG
|b BV043106331
|
029 |
1 |
|
|a DEBSZ
|b 372703712
|
029 |
1 |
|
|a DEBSZ
|b 421539429
|
029 |
1 |
|
|a NZ1
|b 14256926
|
035 |
|
|
|a (OCoLC)754793038
|
050 |
|
4 |
|a QA312
|b .L43 2011eb
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515.4/3
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Lee, Tuo Yeong,
|d 1967-
|
245 |
1 |
0 |
|a Henstock-Kurzweil integration on Euclidean spaces /
|c Lee Tuo Yeong.
|
260 |
|
|
|a New Jersey :
|b World Scientific,
|c ©2011.
|
300 |
|
|
|a 1 online resource (ix, 314 pages).
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Series in real analysis ;
|v v. 12
|
504 |
|
|
|a Includes bibliographical references (pages 295-303) and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a 1. The one-dimensional Henstock-Kurzweil integral. 1.1. Introduction and Cousin's lemma. 1.2. Definition of the Henstock-Kurzweil integral. 1.3. Simple properties. 1.4. Saks-Henstock lemma. 1.5. Notes and remarks -- 2. The multiple Henstock-Kurzweil integral. 2.1. Preliminaries. 2.2. The Henstock-Kurzweil integral. 2.3. Simple properties. 2.4. Saks-Henstock lemma. 2.5. Fubini's theorem. 2.6. Notes and remarks -- 3. Lebesgue integrable functions. 3.1. Introduction. 3.2. Some convergence theorems for Lebesgue integrals. 3.3. [symbol]-measurable sets. 3.4. A characterization of [symbol]-measurable sets. 3.5. [symbol]-measurable functions. 3.6. Vitali covering theorem. 3.7. Further properties of Lebesgue integrable functions. 3.8. The L[symbol] spaces. 3.9. Lebesgue's criterion for Riemann integrability. 3.10. Some characterizations of Lebesgue integrable functions. 3.11. Some results concerning one-dimensional Lebesgue integral. 3.12. Notes and remarks -- 4. Further properties of Henstock-Kurzweil integrable functions. 4.1. A necessary condition for Henstock-Kurzweil integrability. 4.2. A result of Kurzweil and Jarnik. 4.3. Some necessary and sufficient conditions for Henstock-Kurzweil integrability. 4.4. Harnack extension for one-dimensional Henstock-Kurzweil integrals. 4.5. Other results concerning one-dimensional Henstock-Kurzweil integral. 4.6. Notes and remarks -- 5. The Henstock variational measure. 5.1. Lebesgue outer measure. 5.2. Basic properties of the Henstock variational measure. 5.3. Another characterization of Lebesgue integrable functions. 5.4. A result of Kurzweil and Jarnik revisited. 5.5. A measure-theoretic characterization of the Henstock-Kurzweil integral. 5.6. Product variational measures. 5.7. Notes and remarks.
|
505 |
8 |
|
|a 6. Multipliers for the Henstock-Kurzweil integral. 6.1. One-dimensional integration by parts. 6.2. On functions of bounded variation in the sense of Vitali. 6.3. The m-dimensional Riemann-Stieltjes integral. 6.4. A multiple integration by parts for the Henstock-Kurzweil integral. 6.5. Kurzweil's multiple integration by parts formula for the Henstock-Kurzweil integral. 6.6. Riesz representation theorems. 6.7. Characterization of multipliers for the Henstock-Kurzweil integral. 6.8. A Banach-Steinhaus theorem for the space of Henstock-Kurzweil integrable functions. 6.9. Notes and remarks -- 7. Some selected topics in trigonometric series. 7.1. A generalized Dirichlet test. 7.2. Fourier series. 7.3. Some examples of Fourier series. 7.4. Some Lebesgue integrability theorems for trigonometric series. 7.5. Boas' results. 7.6. On a result of Hardy and Littlewood concerning Fourier series. 7.7. Notes and remarks -- 8. Some applications of the Henstock-Kurzweil integral to double trigonometric series. 8.1. Regularly convergent double series. 8.2. Double Fourier series. 8.3. Some examples of double Fourier series. 8.4. A Lebesgue integrability theorem for double cosine series. 8.5. A Lebesgue integrability theorem for double sine series. 8.6. A convergence theorem for Henstock-Kurzweil integrals. 8.7. Applications to double Fourier series. 8.8. Another convergence theorem for Henstock-Kurzweil integrals. 8.9. A two-dimensional analogue of Boas' theorem. 8.10. A convergence theorem for double sine series. 8.11. Some open problems. 8.12. Notes and remarks.
|
520 |
|
|
|a The Henstock-Kurzweil integral, which is also known as the generalized Riemann integral, arose from a slight modification of the classical Riemann integral more than 50 years ago. This relatively new integral is known to be equivalent to the classical Perron integral; in particular, it includes the powerful Lebesgue integral. This book presents an introduction of the multiple Henstock-Kurzweil integral. Along with the classical results, this book contains some recent developments connected with measures, multiple integration by parts, and multiple Fourier series. The book can be understood with a prerequisite of advanced calculus.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Henstock-Kurzweil integral.
|
650 |
|
0 |
|a Lebesgue integral.
|
650 |
|
0 |
|a Calculus, Integral.
|
650 |
|
6 |
|a Intégrale de Kurzweil-Henstock.
|
650 |
|
6 |
|a Intégrale de Lebesgue.
|
650 |
|
6 |
|a Calcul intégral.
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Calculus, Integral.
|2 fast
|0 (OCoLC)fst00844143
|
650 |
|
7 |
|a Henstock-Kurzweil integral.
|2 fast
|0 (OCoLC)fst00955178
|
650 |
|
7 |
|a Lebesgue integral.
|2 fast
|0 (OCoLC)fst00995240
|
776 |
0 |
8 |
|i Print version:
|a Lee, Tuo Yeong, 1967-
|t Henstock-Kurzweil integration on Euclidean spaces.
|d Singapore ; Hackensack, N.J. : World Scientific, ©2011
|z 9789814324588
|w (OCoLC)724966681
|
830 |
|
0 |
|a Series in real analysis ;
|v v. 12.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=389631
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH25565256
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10493518
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 389631
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7135062
|
994 |
|
|
|a 92
|b IZTAP
|