Cargando…

Evaluating Learning Algorithms : a classification perspective /

"The field of machine learning has matured to the point where many sophisticated learning approaches can be applied to practical applications. Thus it is of critical importance that researchers have the proper tools to evaluate learning approaches and understand the underlying issues. This book...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Japkowicz, Nathalie
Otros Autores: Shah, Mohak
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 2011.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn726740640
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 110523s2011 enka ob 001 0 eng d
010 |z  2010048733 
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d CDX  |d OCLCQ  |d UIU  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d YDXCP  |d OCLCQ  |d YDX  |d OCLCF  |d OCLCQ  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCQ  |d LUN  |d INARC 
015 |a GBB098588  |2 bnb 
016 7 |a 015629843  |2 Uk 
019 |a 1019971857  |a 1042424854  |a 1058894060  |a 1096234864  |a 1101978143  |a 1102415703  |a 1170281604  |a 1171424151  |a 1391533157 
020 |a 9781139077613  |q (electronic bk.) 
020 |a 1139077619  |q (electronic bk.) 
020 |a 9780511921803  |q (electronic bk.) 
020 |a 0511921802  |q (electronic bk.) 
020 |a 9781139079907 
020 |a 1139079905 
020 |z 9780521196000 
020 |z 0521196000 
020 |a 9781107653115  |q (paperback) 
020 |a 1107653118 
029 1 |a AU@  |b 000048965555 
029 1 |a DEBSZ  |b 372899730 
035 |a (OCoLC)726740640  |z (OCoLC)1019971857  |z (OCoLC)1042424854  |z (OCoLC)1058894060  |z (OCoLC)1096234864  |z (OCoLC)1101978143  |z (OCoLC)1102415703  |z (OCoLC)1170281604  |z (OCoLC)1171424151  |z (OCoLC)1391533157 
050 4 |a Q325.5  |b .J37 2011eb 
072 7 |a COM  |x 005030  |2 bisacsh 
072 7 |a COM  |x 004000  |2 bisacsh 
082 0 4 |a 006.3/1  |2 22 
084 |a COM016000  |2 bisacsh 
049 |a UAMI 
100 1 |a Japkowicz, Nathalie. 
245 1 0 |a Evaluating Learning Algorithms :  |b a classification perspective /  |c Nathalie Japkowicz, Mohak Shah. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2011. 
300 |a 1 online resource (xvi, 406 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a "The field of machine learning has matured to the point where many sophisticated learning approaches can be applied to practical applications. Thus it is of critical importance that researchers have the proper tools to evaluate learning approaches and understand the underlying issues. This book examines various aspects of the evaluation process with an emphasis on classification algorithms. The authors describe several techniques for classifier performance assessment, error estimation and resampling, obtaining statistical significance as well as selecting appropriate domains for evaluation. They also present a unified evaluation framework and highlight how different components of evaluation are both significantly interrelated and interdependent. The techniques presented in the book are illustrated using R and WEKA facilitating better practical insight as well as implementation. Aimed at researchers in the theory and applications of machine learning, this book offers a solid basis for conducting performance evaluations of algorithms in practical settings"--  |c Provided by publisher 
520 |a "Technological advances, in recent decades, have made it possible to automate many tasks that previously required signi.cant amounts of manual time, performing regular or repetitive activities. Certainly, computing machines have proven to be a great asset in improving on human speed and e.ciency as well as in reducing errors in these essentially mechanical tasks. More impressively, however, the emergence of computing technologies has also enabled the automation of tasks that require signi.cant understanding of intrinsically human domains that can, in no way, be qualified as merely mechanical. While we, humans, have maintained an edge in performing some of these tasks, e.g. recognizing pictures or delineating boundaries in a given picture, we have been less successful at others, e.g., fraud or computer network attack detection, owing to the sheer volume of data involved, and to the presence of nonlinear patterns to be discerned and analyzed simultaneously within these data. Machine Learning and Data Mining, on the other hand, have heralded significant advances, both theoretical and applied, in this direction, thus getting us one step closer to realizing such goals"--  |c Provided by publisher 
504 |a Includes bibliographical references (pages 393-402) and index. 
505 0 |a 1. Introduction -- 2. Machine Learning and Statistics Overview -- 3. Performance Measures I -- 4. Performance Measures II -- 5. Error Estimation -- 6. Statistical Significance testing --7. Datasets and Experimental Framework --8. Recent Developments -- 9. Conclusion -- Appendix A: Statistical Tables -- Appendix B: Additional Information on the Data -- Appendix C: Two Case Studies. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Machine learning. 
650 0 |a Computer algorithms  |x Evaluation. 
650 6 |a Apprentissage automatique. 
650 6 |a Algorithmes  |x Évaluation. 
650 7 |a COMPUTERS  |x Computer Vision & Pattern Recognition.  |2 bisacsh 
650 7 |a COMPUTERS  |x Enterprise Applications  |x Business Intelligence Tools.  |2 bisacsh 
650 7 |a COMPUTERS  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
700 1 |a Shah, Mohak. 
776 0 8 |i Print version:  |a Japkowicz, Nathalie.  |t Evaluating Learning Algorithms.  |d Cambridge ; New York : Cambridge University Press, 2011  |z 9780521196000  |w (DLC) 2010048733  |w (OCoLC)656771628 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=366108  |z Texto completo 
938 |a Coutts Information Services  |b COUT  |n 17935775 
938 |a ebrary  |b EBRY  |n ebr10469102 
938 |a EBSCOhost  |b EBSC  |n 366108 
938 |a YBP Library Services  |b YANK  |n 5690232 
938 |a YBP Library Services  |b YANK  |n 6300872 
938 |a YBP Library Services  |b YANK  |n 6901960 
938 |a YBP Library Services  |b YANK  |n 7050824 
938 |a Internet Archive  |b INAR  |n evaluatinglearni0000japk 
994 |a 92  |b IZTAP