Cargando…

Algebraic cycles and motives. Volume 1 /

Algebraic geometry is a central subfield of mathematics in which the study of cycles is an important theme. Alexander Grothendieck taught that algebraic cycles should be considered from a motivic point of view and in recent years this topic has spurred a lot of activity. This 2007 book is one of two...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: European Algebraic Geometry Research Training Network
Otros Autores: Nagel, Jan, Peters, C. (Chris), Murre, Jacob P., 1929-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 2007.
Colección:London Mathematical Society lecture note series ; 343.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn704517983
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 110114s2007 enka ob 110 0 eng d
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCQ  |d N$T  |d OCLCQ  |d OCLCF  |d YDXCP  |d COO  |d AUD  |d OCL  |d OCLCQ  |d UAB  |d OCLCQ  |d AU@  |d OL$  |d OCLCQ  |d OCL  |d VLY  |d LUN  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 776965735  |a 1162090457  |a 1167491408  |a 1241900453 
020 |a 9781107362987  |q (electronic bk.) 
020 |a 1107362989  |q (electronic bk.) 
020 |a 9780511893926  |q (electronic bk.) 
020 |a 0511893922  |q (electronic bk.) 
020 |a 9780511721496  |q (ebook) 
020 |a 0511721498  |q (ebook) 
020 |a 0521701740  |q (paperback) 
020 |a 9780521701747  |q (paperback) 
020 |a 1139882708 
020 |a 9781139882705 
020 |a 1107367891 
020 |a 9781107367890 
020 |a 1107372437 
020 |a 9781107372436 
020 |a 1107369924 
020 |a 9781107369924 
020 |a 1299405495 
020 |a 9781299405493 
020 |a 1107365430 
020 |a 9781107365438 
020 |z 9780521701747  |q (paperback) 
029 1 |a AU@  |b 000062467714 
029 1 |a AU@  |b 000069535484 
035 |a (OCoLC)704517983  |z (OCoLC)776965735  |z (OCoLC)1162090457  |z (OCoLC)1167491408  |z (OCoLC)1241900453 
050 4 |a QA564  |b .A187 2007eb 
072 7 |a MAT  |x 012010  |2 bisacsh 
082 0 4 |a 516.35  |2 22 
049 |a UAMI 
245 0 0 |a Algebraic cycles and motives.  |n Volume 1 /  |c edited by Jan Nagel, Chris Peters. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2007. 
300 |a 1 online resource (xiv, 292 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 343 
504 |a Includes bibliographical references. 
588 0 |a Print version record. 
520 |a Algebraic geometry is a central subfield of mathematics in which the study of cycles is an important theme. Alexander Grothendieck taught that algebraic cycles should be considered from a motivic point of view and in recent years this topic has spurred a lot of activity. This 2007 book is one of two volumes that provide a self-contained account of the subject. Together, the two books contain twenty-two contributions from leading figures in the field which survey the key research strands and present interesting new results. Topics discussed include: the study of algebraic cycles using Abel-Jacobi/regulator maps and normal functions; motives (Voevodsky's triangulated category of mixed motives, finite-dimensional motives); the conjectures of Bloch-Beilinson and Murre on filtrations on Chow groups and Bloch's conjecture. Researchers and students in complex algebraic geometry and arithmetic geometry will find much of interest here. 
505 0 |a Cover; Title; Copyright; Contents of Volume 1; Preface; Volume 1: Survey Articles ; 1 The Motivic Vanishing Cycles and the Conservation Conjecture ; 1.1 Introduction; 1.2 The classical pictures; 1.2.1 The vanishing cycles formalism in étale cohomology; 1.2.2 The Rapoport-Zink construction; 1.2.3 The limit of a variation of Hodge structures; 1.2.4 The analogy between the situations in étale cohomology and Hodge theory; 1.3 Specialization systems; 1.3.1 The motivic categories. 
505 8 |a 1.3.2 Definitions and examples1.3.3 The basic results; 1.4 Constructing the vanishing cycles formalism; 1.4.1 The idea of the construction; 1.4.2 The cosimplicial motive A and the construction of Y; 1.4.3 The construction of \; 1.4.4 Pseudo-monoidal structure; 1.4.5 Compatibility with duality; 1.4.6 The monodromy operator; 1.5 Conservation conjecture. Application to Schur finiteness of motives; 1.5.1 The statement of the conjecture; 1.5.2 About the Schur finiteness of motives; 1.5.3 The conservation conjecture implies the Schur finiteness of motives. 
505 8 |a 1.5.4 Some steps toward the Conservation conjecture2 On the Theory of 1-Motives ; 2.1 On Picard Functors; 2.1.1 Simplicial Picard Functors; 2.1.2 Relative Picard Functors; 2.1.3 Higher Picard Functors; 2.2 On 1-Motives; 2.2.1 Generalities; 2.2.2 Hodge Realization; 2.2.3 Flat, ℓ-adic and Étale Realizations; 2.2.4 Crystalline Realization; 2.2.5 De Rham Realization; 2.2.6 Paradigma; 2.2.7 Cartier Duality; 2.2.8 Symmetric Avatar; 2.2.9 1-Motives with Torsion; 2.2.10 1-Motives up to Isogenies; 2.2.11 Universal Realization and Triangulated 1-Motives. 
505 8 |a 2.2.12 1-Motives with Additive Factors2.3 On 1-Motivic (Co)homology; 2.3.1 Albanese and Picard 1-Motives; 2.3.2 Hodge 1-Motives; 2.3.3 Non-homotopical Invariant Theories; 2.3.4 Final Remarks; 3 Motivic Decomposition for Resolutions of Threefolds ; 3.1 Introduction; 3.2 Intersection forms; 3.2.1 Surfaces; 3.2.2 Intersection forms associated to a map; 3.2.3 Resolutions of isolated singularities in dimension 3; 3.3 Intersection forms and Decomposition in the Derived Category; 3.3.1 Resolution of surface singularities. 
505 8 |a 3.3.2 Fibrations over curves3.3.3 Smooth maps; 3.4 Perverse sheaves and the Decomposition Theorem; 3.4.1 Truncation and Perverse sheaves; 3.4.2 The simple objects of P(Y); 3.4.4 The Decomposition Theorem of Beilinson, Bernstein, Deligne and Gabber; 3.4.5 Results on intersection forms; 3.4.6 The decomposition mechanism; 3.5 Grothendieck motive decomposition for maps of threefolds; 4 Correspondences and Transfers ; 4.1 Finite Correspondences; 4.1.1 Relative Cycles; 4.1.2 Composition of Finite Correspondences; 4.1.3 Monoidal Structure. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Algebraic cycles  |v Congresses. 
650 0 |a Motives (Mathematics)  |v Congresses. 
650 6 |a Cycles algébriques  |v Congrès. 
650 6 |a Motifs (Mathématiques)  |v Congrès. 
650 7 |a MATHEMATICS  |x Geometry  |x Algebraic.  |2 bisacsh 
650 7 |a Algebraic cycles.  |2 fast  |0 (OCoLC)fst00804930 
650 7 |a Motives (Mathematics)  |2 fast  |0 (OCoLC)fst01027555 
655 7 |a Conference papers and proceedings.  |2 fast  |0 (OCoLC)fst01423772 
700 1 |a Nagel, Jan. 
700 1 |a Peters, C.  |q (Chris) 
700 1 |a Murre, Jacob P.,  |d 1929- 
710 2 |a European Algebraic Geometry Research Training Network. 
776 0 8 |i Print version:  |z 9780521701747 
830 0 |a London Mathematical Society lecture note series ;  |v 343. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552365  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10438565 
938 |a EBSCOhost  |b EBSC  |n 552365 
938 |a YBP Library Services  |b YANK  |n 10370415 
938 |a YBP Library Services  |b YANK  |n 3583263 
938 |a YBP Library Services  |b YANK  |n 10405714 
938 |a YBP Library Services  |b YANK  |n 10689791 
994 |a 92  |b IZTAP