Nanomaterials : properties, preparation and processes /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York :
Nova Science Publishers,
©2010.
|
Colección: | Nanotechnology science and technology series.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Nanomaterials: properties, preparation and processes
- nanomaterials: properties, preparation and processes
- contents
- preface
- theory of the magnetic pulsed compaction of nanosized powders
- abstract
- introduction
- 1. the nanopowders hardening laws and the radial compaction within the quasi-static conditions
- 2. regularities of dynamic processes of nanopowders radial compaction
- 3. the radial magnetic pulsed compaction within pronounced skin effect approximation
- 4. the î?- pinch theory taking into account the magnetic field diffusion
- The Dynamics of the Electric Circuit The Diffusion of the Magnetic Field
- Heating of the Turns, the Shell and the Rod
- Details of Numerical Calculations
- Comparison with Experiments
- Theoretical Calculations and the Discussion
- CONCLUSION
- REFERENCES
- TIO2 NANOCRYSTALS: PHASE SELECTIVE AND MORPHOLOGY CONTROLLABLE SYNTHESIS AND THEIR ENHANCED FUNCTIONALITY VIA DOPING
- ABSTRACT
- 1. INTRODUCTION
- 2. PHASE SELECTIVE AND MORPHOLOGY CONTROLLABLE SYNTHESIS OF TIO2 POLYMORPHS
- 2.1. Phase Controlled Synthesis via Hydrothermal Processing
- 2.2. Synthesis of Quasi-equiaxed Rutile Nanocrystals via Acid Hydrothermal Conversion of Degussa P25 2.3. Phase Structure and Morphology Controlled Synthesis under Near Ambient Conditions
- 3. DOPING TIO2 NANOCRYSTALS FOR ENHANCED FUNCTIONALITIES
- 3.1. Non-Metallic Doping of TiO2 for Enhanced Photocatalysis via Single Molecular Processing
- 3.2. Efficient Doping of TiO2 Nanocrystals via Radio-Frequency (RF) Thermal Plasma Processing
- 3.2.1. Chlorine doping for improved photocatalytic performances
- 3.2.2. Rare-earth doping for novel photoluminescent properties
- 3.2.3. Transition metal (Co2+) doping for room temperature ferromagnetismCONCLUSION
- ACKNOWLEDGMENT
- REFERENCES
- NANOPARTICLE SYNTHESIS BY THERMAL PLASMAS
- ABSTRACT
- 1. INTRODUCTION
- 2. CHARACTERISTICS OF THERMAL PLASMAS
- 2.1. Fundamental Processes in Thermal Plasmas
- 2.2. Induction Thermal Plasmas
- 2.3. DC Plasmas
- 3. Experimental Research of ITP-Aided Nanoparticle Synthesis
- 3.1. Intermetallic Compound and Alloy Nanoparticle
- 3.2. Ferrite Nanoparticle
- 3.3. Boride Nanoparticle
- 3.3.1. Thermodynamic Consideration
- 3.3.2. Experimental 3.3.3. Discussion
- 3.4. Silicide Nanoparticle
- 3.4.1. Experimental
- 3.5. Carbide Nanoparticle
- 3.5.1. Silicon Carbide
- 3.5.2. Tantalum Carbide
- 3.5.3. Tungsten Carbide
- 3.6. Nitride Nanoparticle
- 3.6.1. Titanium Nitride
- 3.6.2. Silicon Nitride
- 3.6.3. Aluminum Nitride
- 3.7. Oxide Nanoparticle
- 3.7.1. Experimental
- 4. MODELING OF ITP-AIDED NANOPARTICLE SYNTHESIS
- 4.1. Fundamental Mechanism
- 4.2. Model Description and Numerical Results
- 4.2.1. Induction Thermal Plasma