Cargando…

Nanomaterials : properties, preparation and processes /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Cabral, Vinicius, Silva, Renan, 1965-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Nova Science Publishers, ©2010.
Colección:Nanotechnology science and technology series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Nanomaterials: properties, preparation and processes
  • nanomaterials: properties, preparation and processes
  • contents
  • preface
  • theory of the magnetic pulsed compaction of nanosized powders
  • abstract
  • introduction
  • 1. the nanopowders hardening laws and the radial compaction within the quasi-static conditions
  • 2. regularities of dynamic processes of nanopowders radial compaction
  • 3. the radial magnetic pulsed compaction within pronounced skin effect approximation
  • 4. the î?- pinch theory taking into account the magnetic field diffusion
  • The Dynamics of the Electric Circuit The Diffusion of the Magnetic Field
  • Heating of the Turns, the Shell and the Rod
  • Details of Numerical Calculations
  • Comparison with Experiments
  • Theoretical Calculations and the Discussion
  • CONCLUSION
  • REFERENCES
  • TIO2 NANOCRYSTALS: PHASE SELECTIVE AND MORPHOLOGY CONTROLLABLE SYNTHESIS AND THEIR ENHANCED FUNCTIONALITY VIA DOPING
  • ABSTRACT
  • 1. INTRODUCTION
  • 2. PHASE SELECTIVE AND MORPHOLOGY CONTROLLABLE SYNTHESIS OF TIO2 POLYMORPHS
  • 2.1. Phase Controlled Synthesis via Hydrothermal Processing
  • 2.2. Synthesis of Quasi-equiaxed Rutile Nanocrystals via Acid Hydrothermal Conversion of Degussa P25 2.3. Phase Structure and Morphology Controlled Synthesis under Near Ambient Conditions
  • 3. DOPING TIO2 NANOCRYSTALS FOR ENHANCED FUNCTIONALITIES
  • 3.1. Non-Metallic Doping of TiO2 for Enhanced Photocatalysis via Single Molecular Processing
  • 3.2. Efficient Doping of TiO2 Nanocrystals via Radio-Frequency (RF) Thermal Plasma Processing
  • 3.2.1. Chlorine doping for improved photocatalytic performances
  • 3.2.2. Rare-earth doping for novel photoluminescent properties
  • 3.2.3. Transition metal (Co2+) doping for room temperature ferromagnetismCONCLUSION
  • ACKNOWLEDGMENT
  • REFERENCES
  • NANOPARTICLE SYNTHESIS BY THERMAL PLASMAS
  • ABSTRACT
  • 1. INTRODUCTION
  • 2. CHARACTERISTICS OF THERMAL PLASMAS
  • 2.1. Fundamental Processes in Thermal Plasmas
  • 2.2. Induction Thermal Plasmas
  • 2.3. DC Plasmas
  • 3. Experimental Research of ITP-Aided Nanoparticle Synthesis
  • 3.1. Intermetallic Compound and Alloy Nanoparticle
  • 3.2. Ferrite Nanoparticle
  • 3.3. Boride Nanoparticle
  • 3.3.1. Thermodynamic Consideration
  • 3.3.2. Experimental 3.3.3. Discussion
  • 3.4. Silicide Nanoparticle
  • 3.4.1. Experimental
  • 3.5. Carbide Nanoparticle
  • 3.5.1. Silicon Carbide
  • 3.5.2. Tantalum Carbide
  • 3.5.3. Tungsten Carbide
  • 3.6. Nitride Nanoparticle
  • 3.6.1. Titanium Nitride
  • 3.6.2. Silicon Nitride
  • 3.6.3. Aluminum Nitride
  • 3.7. Oxide Nanoparticle
  • 3.7.1. Experimental
  • 4. MODELING OF ITP-AIDED NANOPARTICLE SYNTHESIS
  • 4.1. Fundamental Mechanism
  • 4.2. Model Description and Numerical Results
  • 4.2.1. Induction Thermal Plasma