Cargando…

Principles of astrophysical fluid dynamics /

This textbook introduces the necessary fluid dynamics to understand a wide range of astronomical phenomena, from stellar structures to supernovae blast waves, to accretion discs. The authors introduce and derive the fundamental equations.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Clarke, Catherine Jane
Otros Autores: Carswell, Bob, 1940-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, ©2007.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1.1 Fluids in the Universe 2
  • 1.2 The concept of a 'fluid element' 4
  • 1.3 Formulation of the fluid equations 5
  • 1.4 Relation between the Eulerian and Lagrangian descriptions 7
  • 1.5 Kinematical concepts 8
  • 2 The fluid equations 12
  • 2.1 Conservation of mass 12
  • 2.2 Pressure 14
  • 2.3 Momentum equations 15
  • 2.4 Momentum equation in conservative form: the stress tensor and concept of ram pressure 17
  • 3 Gravitation 20
  • 3.1 The gravitational potential 20
  • 3.2 Poisson's equation 22
  • 3.3 Using Poisson's equation 24
  • 3.4 The potential associated with a spherical mass distribution 27
  • 3.5 Gravitational potential energy 28
  • 3.6 The virial theorem 30
  • 4 The energy equation 32
  • 4.1 Ideal gases 32
  • 4.2 Barotropic equations of state: the isothermal and adiabatic cases 33
  • 4.3 Energy equation 37
  • 4.4 Energy transport 39
  • 4.5 The form of Q[subscript cool] 45
  • 5 Hydrostatic equilibrium 46
  • 5.1 Basic equations 46
  • 5.2 The isothermal slab 47
  • 5.3 An isothermal atmosphere with constant g 49
  • 5.4 Stars as self-gravitating polytropes 50
  • 5.5 Solutions for the Lane-Emden equation 52
  • 5.6 The case of n = [infinity] 55
  • 5.7 Scaling relations 56
  • 5.8 Examples of astrophysical interest 60
  • 5.9 Summary: general method for scaling relations 62
  • 6 Propagation of sound waves 63
  • 6.1 Sound waves in a uniform medium 63
  • 6.2 Propagation of sound waves in a stratified atmosphere 68
  • 6.3 General approach to wave propagation problems 73
  • 6.4 Transmission of sound waves at interfaces 74
  • 7 Supersonic flows 77
  • 7.1 Shocks 78
  • 7.2 Isothermal shocks 85
  • 8 Blast waves 89
  • 8.1 Strong explosions in uniform atmospheres 89
  • 8.2 Blast waves in astrophysics and elsewhere 96
  • 8.3 Structure of the blast wave 99
  • 8.4 Breakdown of the similarity solution 102
  • 8.5 The effects of cooling and blow out from galactic discs 104
  • 9 Bernoulli's equation 107
  • 9.1 Basic equation 107
  • 9.2 De Laval nozzle 113
  • 9.3 Spherical accretion and winds 118
  • 9.4 Stellar winds 123
  • 9.5 General steady state solutions 126
  • 10 Fluid instabilities 128
  • 10.1 Rayleigh-Taylor instability 128
  • 10.2 Gravitational instability (Jeans instability) 139
  • 10.3 Thermal instability 142
  • 10.4 Method summary 149
  • 11 Viscous flows 150
  • 11.1 Linear shear and viscosity 150
  • 11.2 Navier-Stokes equation 153
  • 11.3 Evolution of vorticity in viscous flows 157
  • 11.4 Energy dissipation in incompressible viscous flows 158
  • 11.5 Viscous flow through a circular pipe and the transition to turbulence 159
  • 12 Accretion discs in astrophysics 163
  • 12.1 Derivation of viscous evolution equations for accretion discs 165
  • 12.2 Viscous evolution equation with constant viscosity 167
  • 12.3 Steady thin discs 173
  • 12.4 Radiation from steady thin discs 176
  • 13 Plasmas 179
  • 13.1 Magnetohydrodynamic equations 180
  • 13.2 Charge neutrality 184
  • 13.3 Ideal hydromagnetic equations 186
  • 13.4 Waves in plasmas 190
  • 13.5 The Rayleigh-Taylor instability revisited 195
  • Appendix Equations in curvilinear coordinates 200
  • Books for background and further reading 222.