Principles of astrophysical fluid dynamics /
This textbook introduces the necessary fluid dynamics to understand a wide range of astronomical phenomena, from stellar structures to supernovae blast waves, to accretion discs. The authors introduce and derive the fundamental equations.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge :
Cambridge University Press,
©2007.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1.1 Fluids in the Universe 2
- 1.2 The concept of a 'fluid element' 4
- 1.3 Formulation of the fluid equations 5
- 1.4 Relation between the Eulerian and Lagrangian descriptions 7
- 1.5 Kinematical concepts 8
- 2 The fluid equations 12
- 2.1 Conservation of mass 12
- 2.2 Pressure 14
- 2.3 Momentum equations 15
- 2.4 Momentum equation in conservative form: the stress tensor and concept of ram pressure 17
- 3 Gravitation 20
- 3.1 The gravitational potential 20
- 3.2 Poisson's equation 22
- 3.3 Using Poisson's equation 24
- 3.4 The potential associated with a spherical mass distribution 27
- 3.5 Gravitational potential energy 28
- 3.6 The virial theorem 30
- 4 The energy equation 32
- 4.1 Ideal gases 32
- 4.2 Barotropic equations of state: the isothermal and adiabatic cases 33
- 4.3 Energy equation 37
- 4.4 Energy transport 39
- 4.5 The form of Q[subscript cool] 45
- 5 Hydrostatic equilibrium 46
- 5.1 Basic equations 46
- 5.2 The isothermal slab 47
- 5.3 An isothermal atmosphere with constant g 49
- 5.4 Stars as self-gravitating polytropes 50
- 5.5 Solutions for the Lane-Emden equation 52
- 5.6 The case of n = [infinity] 55
- 5.7 Scaling relations 56
- 5.8 Examples of astrophysical interest 60
- 5.9 Summary: general method for scaling relations 62
- 6 Propagation of sound waves 63
- 6.1 Sound waves in a uniform medium 63
- 6.2 Propagation of sound waves in a stratified atmosphere 68
- 6.3 General approach to wave propagation problems 73
- 6.4 Transmission of sound waves at interfaces 74
- 7 Supersonic flows 77
- 7.1 Shocks 78
- 7.2 Isothermal shocks 85
- 8 Blast waves 89
- 8.1 Strong explosions in uniform atmospheres 89
- 8.2 Blast waves in astrophysics and elsewhere 96
- 8.3 Structure of the blast wave 99
- 8.4 Breakdown of the similarity solution 102
- 8.5 The effects of cooling and blow out from galactic discs 104
- 9 Bernoulli's equation 107
- 9.1 Basic equation 107
- 9.2 De Laval nozzle 113
- 9.3 Spherical accretion and winds 118
- 9.4 Stellar winds 123
- 9.5 General steady state solutions 126
- 10 Fluid instabilities 128
- 10.1 Rayleigh-Taylor instability 128
- 10.2 Gravitational instability (Jeans instability) 139
- 10.3 Thermal instability 142
- 10.4 Method summary 149
- 11 Viscous flows 150
- 11.1 Linear shear and viscosity 150
- 11.2 Navier-Stokes equation 153
- 11.3 Evolution of vorticity in viscous flows 157
- 11.4 Energy dissipation in incompressible viscous flows 158
- 11.5 Viscous flow through a circular pipe and the transition to turbulence 159
- 12 Accretion discs in astrophysics 163
- 12.1 Derivation of viscous evolution equations for accretion discs 165
- 12.2 Viscous evolution equation with constant viscosity 167
- 12.3 Steady thin discs 173
- 12.4 Radiation from steady thin discs 176
- 13 Plasmas 179
- 13.1 Magnetohydrodynamic equations 180
- 13.2 Charge neutrality 184
- 13.3 Ideal hydromagnetic equations 186
- 13.4 Waves in plasmas 190
- 13.5 The Rayleigh-Taylor instability revisited 195
- Appendix Equations in curvilinear coordinates 200
- Books for background and further reading 222.