Cargando…

Pattern classification using ensemble methods /

Researchers from various disciplines such as pattern recognition, statistics, and machine learning have explored the use of ensemble methodology since the late seventies. Thus, they are faced with a wide variety of methods, given the growing interest in the field. This book aims to impose a degree o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rokach, Lior
Autor Corporativo: World Scientific (Firm)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2010.
Colección:Series in machine perception and artificial intelligence ; v. 75.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn630133693
003 OCoLC
005 20231017213018.0
006 m o d
007 cr buu|||uu|||
008 100524s2010 si a ob 001 0 eng d
040 |a LLB  |b eng  |e pn  |c LLB  |d N$T  |d E7B  |d YDXCP  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCF  |d OCLCQ  |d AZK  |d LOA  |d JBG  |d COCUF  |d AGLDB  |d MOR  |d CCO  |d PIFAG  |d ZCU  |d OTZ  |d OCLCQ  |d STF  |d WRM  |d VTS  |d CEF  |d VT2  |d AU@  |d OCLCQ  |d WYU  |d M8D  |d UKAHL  |d VLY  |d TKN  |d LEAUB  |d OCLCO  |d UIU  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCL 
019 |a 670430142  |a 694144128  |a 764546179  |a 961497795  |a 962567599  |a 966264556  |a 988407336  |a 992025480  |a 995008816  |a 1037794074  |a 1038611099  |a 1055353496  |a 1062965711  |a 1064092706  |a 1162543008  |a 1228560782 
020 |a 9789814271073  |q (electronic bk.) 
020 |a 9814271071  |q (electronic bk.) 
020 |z 9814271063 
020 |z 9789814271066 
020 |a 1282757857 
020 |a 9781282757851 
020 |a 9786612757853 
020 |a 661275785X 
029 1 |a AU@  |b 000051401096 
029 1 |a DEBBG  |b BV043098870 
029 1 |a DEBSZ  |b 372741010 
029 1 |a DEBSZ  |b 421675195 
029 1 |a GBVCP  |b 803177356 
029 1 |a NZ1  |b 13868717 
035 |a (OCoLC)630133693  |z (OCoLC)670430142  |z (OCoLC)694144128  |z (OCoLC)764546179  |z (OCoLC)961497795  |z (OCoLC)962567599  |z (OCoLC)966264556  |z (OCoLC)988407336  |z (OCoLC)992025480  |z (OCoLC)995008816  |z (OCoLC)1037794074  |z (OCoLC)1038611099  |z (OCoLC)1055353496  |z (OCoLC)1062965711  |z (OCoLC)1064092706  |z (OCoLC)1162543008  |z (OCoLC)1228560782 
050 4 |a TK7882.P3  |b R65 2010eb 
072 7 |a COM  |x 047000  |2 bisacsh 
082 0 4 |a 006.4  |2 22 
049 |a UAMI 
100 1 |a Rokach, Lior. 
245 1 0 |a Pattern classification using ensemble methods /  |c Lior Rokach. 
260 |a Singapore ;  |a Hackensack, N.J. :  |b World Scientific Pub. Co.,  |c ©2010. 
300 |a 1 online resource (xv, 225 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Series in machine perception and artificial intelligence ;  |v v. 75 
504 |a Includes bibliographical references (pages 185-222) and index. 
505 0 |a 1. Introduction to pattern classification. 1.1. Pattern classification. 1.2. Induction algorithms. 1.3. Rule induction. 1.4. Decision trees. 1.5. Bayesian methods. 1.6. Other induction methods -- 2. Introduction to ensemble learning. 2.1. Back to the roots. 2.2. The wisdom of crowds. 2.3. The bagging algorithm. 2.4. The boosting algorithm. 2.5. The AdaBoost algorithm. 2.6. No free lunch theorem and ensemble learning. 2.7. Bias-variance decomposition and ensemble learning. 2.8. Occam's razor and ensemble learning. 2.9. Classifier dependency. 2.10. Ensemble methods for advanced classification tasks -- 3. Ensemble classification. 3.1. Fusions methods. 3.2. Selecting classification. 3.3. Mixture of experts and meta learning -- 4. Ensemble diversity. 4.1. Overview. 4.2. Manipulating the inducer. 4.3. Manipulating the training samples. 4.4. Manipulating the target attribute representation. 4.5. Partitioning the search space. 4.6. Multi-inducers. 4.7. Measuring the diversity -- 5. Ensemble selection. 5.1. Ensemble selection. 5.2. Pre selection of the ensemble size. 5.3. Selection of the ensemble size while training. 5.4. Pruning -- post selection of the ensemble size -- 6. Error correcting output codes. 6.1. Code-matrix decomposition of multiclass problems. 6.2. Type I -- training an ensemble given a code-matrix. 6.3. Type II -- adapting code-matrices to the multiclass problems -- 7. Evaluating ensembles of classifiers. 7.1. Generalization error. 7.2. Computational complexity. 7.3. Interpretability of the resulting ensemble. 7.4. Scalability to large datasets. 7.5. Robustness. 7.6. Stability. 7.7. Flexibility. 7.8. Usability. 7.9. Software availability. 7.10. Which ensemble method should be used? 
520 |a Researchers from various disciplines such as pattern recognition, statistics, and machine learning have explored the use of ensemble methodology since the late seventies. Thus, they are faced with a wide variety of methods, given the growing interest in the field. This book aims to impose a degree of order upon this diversity by presenting a coherent and unified repository of ensemble methods, theories, trends, challenges and applications. The book describes in detail the classical methods, as well as the extensions and novel approaches developed recently. Along with algorithmic descriptions of each method, it also explains the circumstances in which this method is applicable and the consequences and the trade-offs incurred by using the method. 
588 0 |a Print version record. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Pattern recognition systems. 
650 0 |a Algorithms. 
650 0 |a Machine learning. 
650 0 |a Pattern recognition systems  |x Classification. 
650 0 |a Set theory. 
650 2 |a Pattern Recognition, Automated 
650 2 |a Algorithms 
650 6 |a Reconnaissance des formes (Informatique)  |x Classification. 
650 6 |a Théorie des ensembles. 
650 6 |a Reconnaissance des formes (Informatique) 
650 6 |a Algorithmes. 
650 6 |a Apprentissage automatique. 
650 7 |a algorithms.  |2 aat 
650 7 |a COMPUTERS  |x Optical Data Processing.  |2 bisacsh 
650 7 |a Set theory.  |2 fast  |0 (OCoLC)fst01113587 
650 7 |a Algorithms.  |2 fast  |0 (OCoLC)fst00805020 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Pattern recognition systems.  |2 fast  |0 (OCoLC)fst01055266 
650 0 7 |a Mustererkennung.  |2 swd 
655 7 |a Classification.  |2 fast  |0 (OCoLC)fst01697073 
710 2 |a World Scientific (Firm) 
776 1 |z 9814271063 
776 1 |z 9789814271066 
830 0 |a Series in machine perception and artificial intelligence ;  |v v. 75. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340641  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24686299 
938 |a ebrary  |b EBRY  |n ebr10422182 
938 |a EBSCOhost  |b EBSC  |n 340641 
938 |a YBP Library Services  |b YANK  |n 3511398 
994 |a 92  |b IZTAP