Cargando…

Moments, positive polynomials and their applications /

Many important applications in global optimization, algebra, probability and statistics, applied mathematics, control theory, financial mathematics, inverse problems, etc. can be modeled as a particular instance of the Generalized Moment Problem (GMP). This book introduces a new general methodology...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lasserre, Jean-Bernard, 1953-
Autor Corporativo: World Scientific (Firm)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Singapore : Imperial College Press ; Distributed by World Scientific Pub. Co., ©2010.
Colección:Imperial College Press optimization series ; v. 1.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn624365972
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cuu|||uu|||
008 100520s2010 enka ob 001 0 eng d
040 |a LLB  |b eng  |e pn  |c LLB  |d N$T  |d OCLCQ  |d CDX  |d OCLCQ  |d YDXCP  |d OCLCF  |d OCLCO  |d OCLCQ  |d AGLDB  |d OCLCQ  |d VTS  |d VT2  |d OCLCQ  |d WYU  |d OCLCO  |d STF  |d OCLCO  |d JBG  |d LEAUB  |d M8D  |d AJS  |d OCLCO  |d OCLCQ 
016 7 |a 015369161  |2 Uk 
019 |a 666256886  |a 670430586  |a 1055403219  |a 1063812033  |a 1086435527 
020 |a 9781848164468  |q (electronic bk.) 
020 |a 1848164467  |q (electronic bk.) 
020 |a 9786612760006 
020 |a 6612760001 
020 |z 1848164459 
020 |z 9781848164451 
024 8 |a 9786612760006 
029 1 |a AU@  |b 000051395989 
029 1 |a DEBBG  |b BV043138384 
029 1 |a DEBSZ  |b 421675705 
029 1 |a GBVCP  |b 803174098 
035 |a (OCoLC)624365972  |z (OCoLC)666256886  |z (OCoLC)670430586  |z (OCoLC)1055403219  |z (OCoLC)1063812033  |z (OCoLC)1086435527 
037 |a 276000  |b MIL 
050 4 |a QA402.5  |b .L37 2010eb 
072 7 |a MAT  |x 042000  |2 bisacsh 
082 0 4 |a 519.6  |2 22 
049 |a UAMI 
100 1 |a Lasserre, Jean-Bernard,  |d 1953- 
245 1 0 |a Moments, positive polynomials and their applications /  |c Jean Bernard Lasserre. 
260 |a London :  |b Imperial College Press ;  |a Singapore :  |b Distributed by World Scientific Pub. Co.,  |c ©2010. 
300 |a 1 online resource (xxi, 361 pages) :  |b illustrations (some color). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Imperial College Press optimization series,  |x 2041-1677 ;  |v v. 1 
504 |a Includes bibliographical references (pages 341-358) and index. 
505 0 |a 1. The generalized moment problem. 1.1. Formulations. 1.2. Duality theory. 1.3. Computational complexity. 1.4. Summary. 1.5. Exercises. 1.6. Notes and sources -- 2. Positive polynomials. 2.1. Sum of squares representations and semi-definite optimization. 2.2. Nonnegative versus s.o.s. polynomials. 2.3. Representation theorems : univariate case. 2.4. Representation theorems : mutivariate case. 2.5. Polynomials positive on a compact basic semi-algebraic set. 2.6. Polynomials nonnegative on real varieties. 2.7. Representations with sparsity properties. 2.8. Representation of convex polynomials. 2.9. Summary. 2.10. Exercises. 2.11. Notes and sources -- 3. Moments. 3.1. The one-dimensional moment problem. 3.2. The multi-dimensional moment problem. 3.3. The K-moment problem. 3.4. Moment conditions for bounded density. 3.5. Summary. 3.6. Exercises. 3.7. Notes and sources -- 4. Algorithms for moment problems. 4.1. The overall approach. 4.2. Semidefinite relaxations. 4.3. Extraction of solutions. 4.4. Linear relaxations. 4.5. Extensions. 4.6. Exploiting sparsity. 4.7. Summary. 4.8. Exercises. 4.9. Notes and sources. 4.10. Proofs -- 5. Global optimization over polynomials. 5.1. The primal and dual perspectives. 5.2. Unconstrained polynomial optimization. 5.3. Constrained polynomial optimization : semidefinite relaxations. 5.4. Linear programming relaxations. 5.5. Global optimality conditions. 5.6. Convex polynomial programs. 5.7. Discrete optimization. 5.8. Global minimization of a rational function. 5.9. Exploiting symmetry. 5.10. Summary. 5.11. Exercises. 5.12. Notes and sources -- 6. Systems of polynomial equations. 6.1. Introduction. 6.2. Finding a real solution to systems of polynomial equations. 6.3. Finding all complex and/or all real solutions : a unified treatment. 6.4. Summary. 6.5. Exercises. 6.6. Notes and sources -- 7. Applications in probability. 7.1. Upper bounds on measures with moment conditions. 7.2. Measuring basic semi-algebraic sets. 7.3. Measures with given marginals. 7.4. Summary. 7.5. Exercises. 7.6. Notes and sources -- 8. Markov chains applications. 8.1. Bounds on invariant measures. 8.2. Evaluation of ergodic criteria. 8.3. Summary. 8.4. Exercises. 8.5. Notes and sources -- 9. Application in mathematical finance. 9.1. Option pricing with moment information. 9.2. Option pricing with a dynamic model. 9.3. Summary. 9.4. Notes and sources -- 10. Application in control. 10.1. Introduction. 10.2. Weak formulation of optimal control problems. 10.3. Semidefinite relaxations for the OCP. 10.4. Summary. 10.5. Notes and sources -- 11. Convex envelope and representation of convex sets. 11.1. The convex envelope of a rational function. 11.2. Semidefinite representation of convex sets. 11.3. Algebraic certificates of convexity. 11.4. Summary. 11.5. Exercises. 11.6. Notes and sources -- 12. Multivariate integration 12.1. Integration of a rational function. 12.2. Integration of exponentials of polynomials. 12.3. Maximum entropy estimation. 12.4. Summary. 12.5. Exercises. 12.6. Notes and sources -- 13. Min-max problems and Nash equilibria. 13.1. Robust polynomial optimization. 13.2. Minimizing the sup of finitely many rational cunctions. 13.3. Application to Nash equilibria. 13.4. Exercises. 13.5. Notes and sources -- 14. Bounds on linear PDE. 14.1. Linear partial differential equations. 14.2. Notes and sources. 
520 |a Many important applications in global optimization, algebra, probability and statistics, applied mathematics, control theory, financial mathematics, inverse problems, etc. can be modeled as a particular instance of the Generalized Moment Problem (GMP). This book introduces a new general methodology to solve the GMP when its data are polynomials and basic semi-algebraic sets. This methodology combines semidefinite programming with recent results from real algebraic geometry to provide a hierarchy of semidefinite relaxations converging to the desired optimal value. Applied on appropriate cones, standard duality in convex optimization nicely expresses the duality between moments and positive polynomials. In the second part, the methodology is particularized and described in detail for various applications, including global optimization, probability, optimal control, mathematical finance, multivariate integration, etc., and examples are provided for each particular application. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Mathematical optimization. 
650 0 |a Moment problems (Mathematics) 
650 0 |a Geometry, Algebraic. 
650 0 |a Polynomials. 
650 6 |a Optimisation mathématique. 
650 6 |a Problèmes des moments (Mathématiques) 
650 6 |a Géométrie algébrique. 
650 6 |a Polynômes. 
650 7 |a MATHEMATICS  |x Optimization.  |2 bisacsh 
650 7 |a Geometry, Algebraic.  |2 fast  |0 (OCoLC)fst00940902 
650 7 |a Mathematical optimization.  |2 fast  |0 (OCoLC)fst01012099 
650 7 |a Moment problems (Mathematics)  |2 fast  |0 (OCoLC)fst01025012 
650 7 |a Polynomials.  |2 fast  |0 (OCoLC)fst01070715 
650 7 |a Positives Polynom  |2 gnd 
710 2 |a World Scientific (Firm) 
776 1 |z 1848164459 
776 1 |z 9781848164451 
830 0 |a Imperial College Press optimization series ;  |v v. 1. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340588  |z Texto completo 
938 |a Coutts Information Services  |b COUT  |n 15220667 
938 |a EBSCOhost  |b EBSC  |n 340588 
938 |a YBP Library Services  |b YANK  |n 3511269 
994 |a 92  |b IZTAP