4D electron microscopy : imaging in space and time /
The modern electron microscope, as a result of recent revolutionary developments and many evolutionary ones, now yields a wealth of quantitative knowledge pertaining to structure, dynamics, and function barely matched by any other single scientific instrument. It is also poised to contribute much ne...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London : Singapore :
Imperial College Press ; Distributed by World Scientific Pub. Co.,
©2010.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Historical perspectives : from camera obscura to 4D imaging
- 2. Historical perspectives : from camera obscura to 4D imaging. 2.1. Coherence
- a simplified prelude. 2.2. Optical coherence and decoherence. 2.3. Coherence in diffraction. 2.4. Coherence and diffraction in crystallography. 2.5. Coherence in imaging. 2.6. Instrumental factors limiting coherence
- 3. From 2D to 3D structural imaging : salient concepts. 3.1. 2D and 3D imaging. 3.2. Electron crystallography : combining diffraction and imaging. 3.3. High-resolution scanning transmission electron microscopy. 3.4. Biological and other organic materials. 3.5. Electron-energy-loss spectroscopy and imaging by energy-filtered TEM. 3.6. Electron holography
- 4. Applications of 2D and 3D imaging and related techniques. 4.1. Introduction. 4.2. Real-space crystallography via HRTEM and HRSTEM. 4.3. Electron tomography. 4.4. Electron holography. 4.5. Electron crystallography. 4.6. Electron-energy-loss spectroscopy and imaging. 4.7. Atomic resolution in an environmental TEM
- 5. 4D electron imaging in space and time : principles. 5.1. Atomic-scale resolution in time. 5.2. From stop-motion photography to ultrafast imaging. 5.3. Single-electron imaging. 5.4. 4D microscopy : brightness, coherence and degeneracy
- 6. 4D ultrafast electron imaging : developments and applications. 6.1. Developments at Caltech
- a brief history. 6.2. Instruments and techniques. 6.3. Structure, morphology, and mechanics. 6.4. Selected other applications. 6.5. 4D convergent beam UEM : nanodiffraction. 6.6. 4D near-field UEM : nanostructures and plasmonics
- 7. The electron microscope and the synchrotron : a comparison. 7.1. Introduction. 7.2. Transmission x-ray microscopy and x-ray microscopic tomography. 7.3. Coherent x-ray diffraction imaging. 7.4. Extraction of structures from powdered specimens. 7.5. Studies of species in solution. 7.6. Laue crystallography : static and dynamic. 7.7. The perennial problem of radiation damage. 7.8. Summarizing assessment
- 8. 4D visualization : past, present, and future. 8.1. Visualization and complexity. 8.2. Complexity paradox : coherence and creative chaos. 8.3. From 2(3)D to 4D microscopy. 8.4. Emerging developments.