Cargando…

Path integrals in quantum mechanics, statistics, polymer physics, and financial markets /

"This is the fifth, expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutio...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kleinert, Hagen (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Jersey : World Scientific, ©2009.
Edición:5th ed.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn588972336
003 OCoLC
005 20231017213018.0
006 m o d
007 cr mnu---unuuu
008 100331s2009 njua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OSU  |d YDXCP  |d IDEBK  |d E7B  |d OCLCQ  |d UIU  |d OCLCQ  |d OCLCF  |d DEBSZ  |d NLGGC  |d OCLCQ  |d INTCL  |d JBG  |d AGLDB  |d OCLCQ  |d VTS  |d STF  |d M8D  |d UKAHL  |d CUS  |d SGP  |d OCLCO  |d OCLCQ 
019 |a 647850875 
020 |a 9789814273572  |q (electronic bk.) 
020 |a 9814273570  |q (electronic bk.) 
020 |z 9789814273558 
020 |z 9814273554 
020 |z 9789814273565  |q (pbk.) 
020 |z 9814273562  |q (pbk.) 
029 1 |a AU@  |b 000051401022 
029 1 |a DEBBG  |b BV043143941 
029 1 |a DEBSZ  |b 394312740 
029 1 |a DEBSZ  |b 421914173 
029 1 |a DEBSZ  |b 445568844 
029 1 |a GBVCP  |b 803105649 
029 1 |a AU@  |b 000073143046 
035 |a (OCoLC)588972336  |z (OCoLC)647850875 
050 4 |a QC174  |b .K54 2009eb 
072 7 |a SCI  |x 057000  |2 bisacsh 
082 0 4 |a 530.12  |2 22 
049 |a UAMI 
100 1 |a Kleinert, Hagen,  |e author. 
245 1 0 |a Path integrals in quantum mechanics, statistics, polymer physics, and financial markets /  |c Hagen Kleinert. 
250 |a 5th ed. 
260 |a New Jersey :  |b World Scientific,  |c ©2009. 
300 |a 1 online resource (xliii, 1579 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
520 |a "This is the fifth, expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have become possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's famous formula to include singular attractive 1/r and 1/r[superscript 2] potentials. The second is a simple quantum equivalence principle governing the transformation of euclidean path integrals to spaces with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations." "In addition to the time-sliced definition, the author gives a perturbative definition of path integrals which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely integrals over products of distributions." "The powerful Feynman-Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent expansions. The convergence is uniform from weak to strong couplings, opening a way to precise approximate evaluations of analytically unsolvable path integrals." "Tunneling processes are treated in detail. The results are used to determine the lifetime of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbation expansions. A new variational treatment extends the range of validity of previous tunneling theories from large to small barriers. A corresponding extension of large-order perturbation theory now also applies to small orders." "Special attention is devoted to path integrals with -- 
520 |a Topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect." "The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are developed which account for the fact that large market fluctuations occur much more frequently than in Gaussian distributions." --Book Jacket. 
588 0 |a Print version record. 
505 0 |a Preface to Fourth Edition; Preface; Preface to Third Edition; Preface to Second Edition; Preface to First Edition; Contents; List of Figures; List of Tables; 1 Fundamentals; 1.1 Classical Mechanics; 1.2 Relati vistic Mechanics in Curved Spacetime; l.3 Quantum Mechanics; 1.3.1 Bragg Reflections and Interference; 1.3.2 Matter Waves; 1.3.3 SchrOdinger Equation; 1.3.4 Particle Current Conservation; 1.4 Dirac's Bra-Ket Formalism.; 1.4.1 Basis Transformations; 1.4.2 Bracket Notation; 1.4.3 Continuum Limit; 1.4.4 Generalized Functions; 1.4.5 SchrOdinger Equation in Dirac Notation 
505 8 |a 1.4.6 Momentum States1.4.7 Incompleteness and Poisson's Summation Formula; 1.5 Obscrvables; 1.5.1 Uncertainty Relation.; 1.5.2 Density Matrix and Wigner Function.; 1.5.3 Generalization to Many Particles; 1.6 Time Evolution Operator; l.7 Properties of the Time Evolution Operator; 1.8 Heisenberg Picture of Quantum Mechanics; l.9 Interaction Picture and Perturbation Expansion; 1.10 Time Evolution Amplitude; 1.11 Fixed-Energy Amplitude; 1.12 Free-Particle Amplitudes.; 1.13 Quantum Mechanics of General Lagrangian Systems.; 1.14 Particle on the Surface of a Sphere; 1.15 Spinning Top 
505 8 |a 1.16 Scattering1. 16.1 Scattering Matrix; 1.16.2 Cross Section; 1.16.3 Born Approximation; 1. 16.4 Partial Wave Expansion and Eikonal Approximation; 1. 16.5 Scattering Amplitude from Time Evolution Amplitude; 1. 16.6 Lippmann-Schwinger Equation; 1.17 Classical and Quantum Statistics; 1. 17.1 Canonical Ensemble.; 1. 17.2 Grand-Canonical Ensemble; 1.18 Density of States and Ttacelog; Appendix l A Simple Time Evolution Operator.; Appendix I B Convergence of the Fresnel Integral; Appendix l C The Asymmetric Top; Notes and References.; 2 Path Integrals -- Elementary Properties and Simple Solutions 
505 8 |a 2.1 Path Integral Representation of Time Evolution Amplitudcs2.1.1 Sliced Time Evolution Amplitude.; 2.1.2 Zero-Hamiltonian Path Integral.; 2.1.3 SchrOdinger Equation for Time Evolution Amplitude; 2.1.4 Convergence of of the Time-Sliced Evolution Amplitude; 2.1.5 Time Evolution Amplitude in Momentum Space.; 2.1.6 Quantum-Mechanical Partition Function.; 2.1.7 Feynman's Configurat ion Space Pat h Integral; 2.2 Exact Solution for the Frec Particle; 2.2. 1 Direct Solution; 2.2.2 Fluctuations around the Classical Path; 2.2.3 Fluctuation Factor 
505 8 |a 2.2.4 Finite Slicing Properties of Free-Particle Amplitude.2.3 Exact Solution for Harmonic Oscillator; 2.3. 1 Fluctuations around the Classical Path.; 2.3.2 Fluctuation Factor; 2.3.3 The i7]-Prescription and Maslov-Morse Index; 2.3.4 Continuum Limit.; 2.3.5 Useful Fluctuation Formulas.; 2.3.6 Oscillator Amplitude on Finite Time Lattice; 2.4 Gelfand-Yaglom Formula.; 2.4. 1 Recursive Calculation of Fluctuation Detcrminant.; 2.4.2 Examples; 2.4.3 Calculation on Unsliced Time Axis; 2.4.4 D'Alembert's Construction; 2.4 .5 Another Simple Formula.; 2.4.6 Generalization t o D Dimensions 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Path integrals. 
650 0 |a Quantum theory. 
650 0 |a Statistical physics. 
650 0 |a Polymers. 
650 6 |a Intégrales de chemin. 
650 6 |a Théorie quantique. 
650 6 |a Physique statistique. 
650 6 |a Polymères. 
650 7 |a polymers.  |2 aat 
650 7 |a SCIENCE  |x Physics  |x Quantum Theory.  |2 bisacsh 
650 7 |a Path integrals.  |2 fast  |0 (OCoLC)fst01054927 
650 7 |a Polymers.  |2 fast  |0 (OCoLC)fst01070588 
650 7 |a Quantum theory.  |2 fast  |0 (OCoLC)fst01085128 
650 7 |a Statistical physics.  |2 fast  |0 (OCoLC)fst01132076 
776 0 8 |i Print version:  |a Kleinert, Hagen.  |t Path integrals in quantum mechanics, statistics, polymer physics, and financial markets.  |b 5th ed.  |d New Jersey : World Scientific, ©2009  |z 9789814273558  |w (DLC) 2009278813  |w (OCoLC)465681898 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=305317  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24686338 
938 |a ebrary  |b EBRY  |n ebr10361698 
938 |a EBSCOhost  |b EBSC  |n 305317 
938 |a YBP Library Services  |b YANK  |n 3161753 
994 |a 92  |b IZTAP