Lectures on non-equilibrium theory of condensed matter /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New Jersey :
World Scientific,
2006.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Introduction (why and how non-equilibrium?)
- 2. Time-reversal and evolution toward equilibrium
- 3. The 1D model of Caldeira and Leggett
- 4. The classical polaron in a d.c. field
- 5. Schrodinger equation versus Master equation
- 6. Naive deduction of the rate equation from the equation of motion
- 7. Naive quantum kinetics
- 8. Diagonal Master equations and rate equations
- 9. The Boltzmann equation
- 10. Hydrodynamics as scaling of kinetic theory
- 11. Linear response to external perturbations
- 12. The Nyquist theorem
- 13. The Kubo formulae
- 14. Excitonic absorption in a semiconductor
- 15. The longitudinal dielectric function of crystals
- 16. Charged particles interacting with the quantized electromagnetic field
- 17. Master equations for the density operator (reservoir theory)
- 18. Two-level atom interacting with light
- 19. Master equations for the density operator with particle-particle collisions (the super-projector approach)
- 20. Van Hove's weak coupling limit and Davies's generalization
- 21. Bose-Einstein condensation in real time
- 22. Real-time experiments : ultra-short-time spectroscopy
- 23. Keldysh's non-equilibrium Green functions
- 24. Keldysh-Green functions and time-reversal
- 25. Time-dependent Hartree-Fock treatment of Coulomb interaction : the exciton
- 26. Quantum kinetics of electrons and holes scattered by LO phonons within the s.c. RPA and the Kadanoff-Baym approximation
- 27. Full two-time quantum-kinetics of electrons and holes scattered by LO phonons within the s.c. RPA
- 28. Coulomb quantum kinetics of electrons and holes within the s.c. RPA and the Kadanoff-Baym approximation. Time dependent screening
- 29. Full two-time quantum kinetics of an electron-hole Coulomb system : Ward identities
- App. A. H-theorem for bosons.