A compendium of partial differential equation models : method of lines analysis with Matlab /
Mathematical modelling of physical and chemical systems is used extensively throughout science, engineering, and applied mathematics. To use mathematical models, one needs solutions to the model equations; this generally requires numerical methods. This book presents numerical methods and associated...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge ; New York :
Cambridge University Press,
2009.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Dedication
- Contents
- Preface
- 1 An Introduction to the Method of Lines
- SOME PDE BASICS
- INITIAL AND BOUNDARY CONDITIONS
- TYPES OF PDE SOLUTIONS
- PDE SUBSCRIPT NOTATION
- A GENERAL PDE SYSTEM
- PDE GEOMETRIC CLASSIFICATION
- ELEMENTS OF THE MOL
- ODE INTEGRATION WITHIN THE MOL
- NUMERICAL DIFFUSION AND OSCILLATION
- DIFFERENTIAL ALGEBRAIC EQUATIONS
- HIGHER DIMENSIONS AND DIFFERENT COORDINATE SYSTEMS
- h- AND p-REFINEMENT
- ORIGIN OF THE NAME 8220;METHOD OF LINES8221;
- SOURCES OF ODE/DAE INTEGRATORS
- REFERENCES
- 2 A One-Dimensional, Linear Partial Differential Equation
- 3 Greens Function Analysis
- APPENDIX A
- A.1. Verification of Eq. (3.4b) as the Solution to Eq. (3.1)
- A.2. The Function simp
- REFERENCES
- 4 Two Nonlinear, Variable-Coefficient, Inhomogeneous Partial Differential Equations
- REFERENCE
- 5 Euler, Navier Stokes, and Burgers Equations
- REFERENCE
- 6 The Cubic Schr246;dinger Equation
- APPENDIX A: SOME BACKGROUND TO SCHR214;DINGERS EQUATION
- A.1. Introduction
- A.2. A Nonrigorous derivation
- REFERENCES
- 7 The KortewegdeVries Equation
- APPENDIX A
- A.1. FD Routine uxxx7c
- APPENDIX B
- B.1. Jacobian Matrix Routine jpattern_num
- APPENDIX C
- C.1. Some Background to the KdV Equation
- REFERENCES
- 8 The Linear Wave Equation
- APPENDIX A
- A.1. ODE Routines pde_1, pde_2, pde_3
- REFERENCES
- 9 Maxwells Equations
- 10 Elliptic Partial Differential Equations: Laplaces Equation
- REFERENCES
- 11 Three-Dimensional Partial Differential Equation
- 12 Partial Differential Equation with a Mixed Partial Derivative
- REFERENCE
- 13 Simultaneous, Nonlinear, Two-Dimensional Partial Differential Equations in Cylindrical Coordinates
- APPENDIX A
- A.1. Units Check for Eqs. (13.1)(13.13)
- REFERENCES
- 14 Diffusion Equation in Spherical Coordinates
- REFERENCES
- APPENDIX 1 Partial Differential Equations from Conservation Principles: The Anisotropic Diffusion Equation
- REFERENCES
- APPENDIX 2 Order Conditions for Finite-Difference Approximations
- APPENDIX 3 Analytical Solution of Nonlinear, Traveling Wave Partial Differential Equations
- REFERENCES
- APPENDIX 4 Implementation of Time-Varying Boundary Conditions
- APPENDIX 5 The Differentiation in Space Subroutines Library
- FIRST-DERIVATIVE ROUTINES
- Argument List
- SECOND-DERIVATIVE ROUTINES
- Argument List
- HIGHER-ORDER AND MIXED DERIVATIVES
- OBTAINING THE DSS LIBRARY
- APPENDIX 6 Animating Simulation Results
- GENERAL
- MATLAB MOVIE
- BASIC EXAMPLE
- AVI MOVIES
- EXAMPLE BURGERS EQUATION MOVIE
- EXAMPLE SCHR214;DINGER EQUATION MOVIE
- EXAMPLE KdV EQUATION MOVIE
- ANIMATED GIF FILES
- EXAMPLE 3D LAPLACE EQUATION MOVIE
- EXAMPLE SPHERICAL DIFFUSION EQUATION MOVIE
- REFERENCES
- Index.