|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn316568414 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
090320s1984 flu ob 001 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e pn
|c OPELS
|d N$T
|d OCLCQ
|d EBLCP
|d IDEBK
|d OPELS
|d E7B
|d OCLCQ
|d OPELS
|d OCLCQ
|d YDXCP
|d OCLCQ
|d OCLCF
|d DEBBG
|d OCLCQ
|d COO
|d OCLCQ
|d DEBSZ
|d AGLDB
|d OCLCQ
|d VTS
|d STF
|d LEAUB
|d M8D
|d OCLCQ
|d K6U
|d OCLCO
|d SGP
|d OCLCQ
|
019 |
|
|
|a 646827635
|
020 |
|
|
|a 9780126854800
|q (electronic bk.)
|
020 |
|
|
|a 0126854807
|q (electronic bk.)
|
020 |
|
|
|a 9780080956787
|q (electronic bk.)
|
020 |
|
|
|a 0080956785
|q (electronic bk.)
|
029 |
1 |
|
|a AU@
|b 000048129558
|
029 |
1 |
|
|a AU@
|b 000051561135
|
029 |
1 |
|
|a CHNEW
|b 001008491
|
029 |
1 |
|
|a DEBBG
|b BV036962734
|
029 |
1 |
|
|a DEBBG
|b BV039834457
|
029 |
1 |
|
|a DEBBG
|b BV042317713
|
029 |
1 |
|
|a DEBBG
|b BV043043970
|
029 |
1 |
|
|a DEBSZ
|b 40739351X
|
029 |
1 |
|
|a DEBSZ
|b 421939710
|
029 |
1 |
|
|a DEBSZ
|b 482364297
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:9910110450905765
|
029 |
1 |
|
|a NZ1
|b 15193274
|
029 |
1 |
|
|a NZ1
|b 15906416
|
035 |
|
|
|a (OCoLC)316568414
|z (OCoLC)646827635
|
050 |
|
4 |
|a QA402
|b .T46 1984eb
|
072 |
|
7 |
|a MAT
|x 007020
|2 bisacsh
|
082 |
0 |
4 |
|a 515.3/53
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Teo, K. L.
|
245 |
1 |
0 |
|a Computational methods for optimizing distributed systems /
|c K.L. Teo, Z.S. Wu.
|
260 |
|
|
|a Orlando :
|b Academic Press,
|c 1984.
|
300 |
|
|
|a 1 online resource (xiii, 317 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Mathematics in science and engineering ;
|v v. 173
|
504 |
|
|
|a Includes bibliographical references (pages 301-312) and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Computational Methods for Optimizing Distributed Systems; Copyright Page; Contents; Preface; Chapter I. Mathematical Background; 1. Introduction; 2. Some Basic Concepts in Functional Analysis; 3. Some Basic Concepts in Measure Theory; 4. Some Function Spaces; 5. Relaxed Controls; 6. Multivalued Functions; 7. Bibliographical Remarks; Chapter II. Boundary Value Problems of Parabolic Type; 1. Introduction; 2. Boundary-Value Problems-Basic Definitions and Assumptions; 3. Three Elementary Lemmas; 4. A Priori Estimates; 5. Existence and Uniqueness of Solutions; 6. A Continuity Property
|
505 |
8 |
|
|a 7. Certain Properties of Solutions of Equation (2.1)8. Boundary-Value Problems in General Form; 9. A Maximum Principle; Chapter III. Optimal Control of First Boundary Problems: Strong Variation Techniques; 1. Introduction; 2. System Description; 3. The Optimal Control Problems; 4. The Hamiltonian Functions; 5. The Successive Controls; 6. The Algorithm; 7. Necessary and Sufficient Conditions for Optimality; 8. Numerical Consideration; 9. Examples; 10. Discussion; Chapter IV. Optimal Policy of First Boundary Problems: Gradient Techniques; 1. Introduction; 2. System Description
|
505 |
8 |
|
|a 3. The Optimization Problem4. An Increment Formula; 5. The Gradient of the Cost Functional; 6. A Conditional Gradient Algorithm; 7. Numerical Consideration and an Examples; 8. Optimal Control Problems with Terminal Inequality Constraints; 9. The Finite Element Method; 10. Discussion; Chapter V. Relaxed Controls and the Convergence of Optimal Control Algorithms; 1. Introduction; 2. The Strong Variational Algorithm; 3. The Conditional Gradient Algorithm; 4. The Feasible Directions Algorithm; 5. Discussion; Chapter VI. Optimal Control Problems Involving Second Boundary-Value Problems
|
505 |
8 |
|
|a 1. Introduction2. The General Problem Statement; 3. Preparatory Results; 4. A Basic Inequality; 5. An Optimal Control Problem with a Linear Cost Functional; 6. An Optimal Control Problem with a Linear System; 7. The Finite Element Method; 8. Discussion; Appendix I: Stochastic Optimal Control Problems; Appendix II: Certain Results on Partial Differential Equations Needed in Chapters III, IV, and V; Appendix III: An Algorithm of Quadratic Programming; Appendix IV: A Quasi-Newton Method for Nonlinear Function Minimization with Linear Constraints
|
505 |
8 |
|
|a Appendix V: An Algorithm for Optimal Control Problems of Linear Lumped Parameter SystemsAppendix VI: Meyer-Polak Proximity Algorithm; References; List of Notation; Index
|
520 |
|
|
|a Computational methods for optimizing distributed systems.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Differential equations, Parabolic
|x Numerical solutions.
|
650 |
|
0 |
|a Boundary value problems
|x Numerical solutions.
|
650 |
|
0 |
|a Distributed parameter systems.
|
650 |
|
6 |
|a Équations différentielles paraboliques
|x Solutions numériques.
|
650 |
|
6 |
|a Problèmes aux limites
|x Solutions numériques.
|
650 |
|
6 |
|a Systèmes à paramètres répartis.
|
650 |
|
7 |
|a MATHEMATICS
|x Differential Equations
|x Partial.
|2 bisacsh
|
650 |
|
7 |
|a Boundary value problems
|x Numerical solutions.
|2 fast
|0 (OCoLC)fst00837129
|
650 |
|
7 |
|a Differential equations, Parabolic
|x Numerical solutions.
|2 fast
|0 (OCoLC)fst00893482
|
650 |
|
7 |
|a Distributed parameter systems.
|2 fast
|0 (OCoLC)fst00895588
|
700 |
1 |
|
|a Wu, Z. S.
|
776 |
0 |
8 |
|i Print version:
|a Teo, K.L.
|t Computational methods for optimizing distributed systems.
|d Orlando : Academic Press, 1984
|z 9780126854800
|w (DLC) 83015737
|w (OCoLC)10018031
|
830 |
|
0 |
|a Mathematics in science and engineering ;
|v v. 173.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297160
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL453145
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10329497
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 297160
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 3101872
|
994 |
|
|
|a 92
|b IZTAP
|