|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn316566645 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
090320s1983 nyu ob 001 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e pn
|c OPELS
|d N$T
|d OCLCQ
|d EBLCP
|d IDEBK
|d OPELS
|d E7B
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OPELS
|d OCLCF
|d DEBBG
|d OCLCQ
|d NLGGC
|d YDXCP
|d OCLCQ
|d COO
|d OCLCQ
|d DEBSZ
|d AGLDB
|d OCLCQ
|d VTS
|d STF
|d LEAUB
|d M8D
|d OCLCQ
|d OCLCO
|d SGP
|d OCLCQ
|
019 |
|
|
|a 646827880
|a 742295268
|a 816325123
|a 823122112
|a 823843525
|a 823912223
|a 824099298
|a 824154714
|
020 |
|
|
|a 9780122832802
|q (electronic bk.)
|
020 |
|
|
|a 0122832809
|q (electronic bk.)
|
020 |
|
|
|a 9780080956695
|q (electronic bk.)
|
020 |
|
|
|a 0080956696
|q (electronic bk.)
|
029 |
1 |
|
|a AU@
|b 000048131225
|
029 |
1 |
|
|a AU@
|b 000051561973
|
029 |
1 |
|
|a CHNEW
|b 001008299
|
029 |
1 |
|
|a DEBBG
|b BV036962579
|
029 |
1 |
|
|a DEBBG
|b BV039834302
|
029 |
1 |
|
|a DEBBG
|b BV042317565
|
029 |
1 |
|
|a DEBBG
|b BV043045241
|
029 |
1 |
|
|a DEBSZ
|b 407391991
|
029 |
1 |
|
|a DEBSZ
|b 421940484
|
029 |
1 |
|
|a DEBSZ
|b 482362316
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:9910110294005765
|
029 |
1 |
|
|a NZ1
|b 15193121
|
029 |
1 |
|
|a NZ1
|b 15906362
|
035 |
|
|
|a (OCoLC)316566645
|z (OCoLC)646827880
|z (OCoLC)742295268
|z (OCoLC)816325123
|z (OCoLC)823122112
|z (OCoLC)823843525
|z (OCoLC)823912223
|z (OCoLC)824099298
|z (OCoLC)824154714
|
050 |
|
4 |
|a QA377
|b .G498 1983eb
|
072 |
|
7 |
|a MAT
|x 007020
|2 bisacsh
|
082 |
0 |
4 |
|a 515/.353
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Gilbert, Robert P.,
|d 1932-
|
245 |
1 |
0 |
|a First order elliptic systems :
|b a function theoretic approach /
|c Robert P. Gilbert, James L. Buchanan.
|
260 |
|
|
|a New York :
|b Academic Press,
|c 1983.
|
300 |
|
|
|a 1 online resource (xi, 281 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Mathematics in science and engineering ;
|v v. 163
|
504 |
|
|
|a Includes bibliographical references (pages 269-274) and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; First Order Elliptic Systems: A Function Theoretic Approach; Copyright Page; Contents; Preface; Chapter 0. Introduction; Chapter 1. Elliptic Systems in the Plane; 1. Introduction; 2. Hyperanalytic Functions; 3. Generalized Derivatives and the Hypercomplex Pompieu Operator; 4. Generalized Hyperanalytic Functions and Liouville's Theorem; 5. Cauchy Representation for Generalized Hyperanalytic Functions; 6. M-Analytic Functions; 7. Approximate Solutions; Chapter 2. Boundary Value Problems; 1. Introduction; 2. The Plemlj Formulas; 3. The Hilbert Problem for Hyperanalytic Functions
|
505 |
8 |
|
|a 4. The Representation of a Piecewise Generalized Hyperanalytic Function in Terms of a Density5. The Hilbert Problem for Generalized Hyperanalytic Functions; 6. The Hilbert Problem in the Purely Hypercomplex Case; 7. The Riemann-Hilbert Problem for Hypercomplex Functions; 8. The Representation of a Generalized Hyperanalyiic Function in Terms of a Real Density; 9. The Riemann-Hilbert Problem for Generalized Hyperanalytic Functions; 10. The Riemann-Hilbert Problem in the Purely Hypercomplex Case; Chapter 3. Reductions to Hyperanalyticity; 1. Introduction; 2. Similarity Principles
|
505 |
8 |
|
|a 3. Global Similarity Principle4. The Riemann-Hilbert Problem; 5. Hyperanalytic Functions Having Distributional Boundary Data; 6. Nonlinear Problems and Reductions to Linear Problems; 7. Liouville's Theorem and the Similarity Principle for Pascali Systems; Chapter 4. Function Theory over Clifford Algebras; 1. Introduction; 2. Regular Functions; 3. Hilbert Modules; 4. Liouville's Theorem; 5. a-Holomorphic Functions; 6. Generalized Regular Functions in Rn; 7. Overdetermined Elliptic Systems; 8. Function Theory for Higher Order Elliptic Systems with Analytic Coefficients
|
505 |
8 |
|
|a 9. Commutative Alternatives for Higher Dimensional Function TheoryChapter 5. Partial Differential Equations of Several Complex Variables; 1. Inhomogeneous Cauchy-Riemann Equations in Polycylinders; 2. Inhomogeneous Cauchy-Riemann Systems for Several Unknowns; 3. Existence Theorems for Solutions of Partial Differential Equations in Several Complex Variables; 4. Real-Linear Equations in Two Complex Variables; 5. Nonhomogeneous Cauchy-Riemann Equations in Analytic Polyhedra; 6 . Pluriharmonic Functions; Bibliography; Index
|
520 |
|
|
|a First order elliptic systems : a function theoretic approach.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Differential equations, Elliptic.
|
650 |
|
6 |
|a Équations différentielles elliptiques.
|
650 |
|
7 |
|a MATHEMATICS
|x Differential Equations
|x Partial.
|2 bisacsh
|
650 |
|
7 |
|a Differential equations, Elliptic.
|2 fast
|0 (OCoLC)fst00893458
|
650 |
|
7 |
|a Equations différentielles elliptiques.
|2 ram
|
700 |
1 |
|
|a Buchanan, James L.
|
776 |
0 |
8 |
|i Print version:
|a Gilbert, Robert P., 1932-
|t First order elliptic systems.
|d New York : Academic Press, 1983
|z 9780122832802
|w (DLC) 82008703
|w (OCoLC)8452388
|
830 |
|
0 |
|a Mathematics in science and engineering ;
|v v. 163.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297037
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL452953
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10329617
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 297037
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 228934
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 3101863
|
994 |
|
|
|a 92
|b IZTAP
|