Cargando…

Convex analysis in general vector spaces /

Annotation The primary aim of this book is to present the conjugate and sub/differential calculus using the method of perturbation functions in order to obtain the most general results in this field. The secondary aim is to provide important applications of this calculus and of the properties of con...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zalinescu, C., 1952-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: River Edge, N.J. ; London : World Scientific, ©2002.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn285163112
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 081208s2002 enk ob 001 0 eng d
040 |a CaPaEBR  |b eng  |e pn  |c CUY  |d OCLCQ  |d N$T  |d YDXCP  |d E7B  |d OCLCQ  |d FVL  |d OCLCQ  |d OCLCF  |d DKDLA  |d OCLCQ  |d AZK  |d COCUF  |d MOR  |d CCO  |d PIFBR  |d OCLCQ  |d U3W  |d STF  |d WRM  |d VTS  |d NRAMU  |d CRU  |d OCLCQ  |d INT  |d OCLCQ  |d TKN  |d OCLCQ  |d LEAUB  |d UKAHL  |d HS0  |d UWK  |d VLY  |d OCLCQ  |d OCLCO  |d M8D  |d SFB  |d OCLCQ  |d OCLCO 
019 |a 181654891  |a 647684295  |a 722615604  |a 728033155  |a 888835232  |a 961557377  |a 962617591  |a 1109015193  |a 1110263750  |a 1162222664  |a 1227634003  |a 1241940545  |a 1259246708  |a 1290041315  |a 1300589208  |a 1303291202  |a 1303448713  |a 1306582298  |a 1351296850  |a 1356789716  |a 1373464382  |a 1398122563 
020 |a 9789812777096  |q (electronic bk.) 
020 |a 9812777091  |q (electronic bk.) 
020 |z 9812380671  |q (alk. paper) 
029 1 |a AU@  |b 000049163317 
029 1 |a AU@  |b 000053251632 
029 1 |a DEBBG  |b BV043123350 
029 1 |a DEBSZ  |b 422167657 
029 1 |a GBVCP  |b 802726399 
029 1 |a NZ1  |b 12808131 
035 |a (OCoLC)285163112  |z (OCoLC)181654891  |z (OCoLC)647684295  |z (OCoLC)722615604  |z (OCoLC)728033155  |z (OCoLC)888835232  |z (OCoLC)961557377  |z (OCoLC)962617591  |z (OCoLC)1109015193  |z (OCoLC)1110263750  |z (OCoLC)1162222664  |z (OCoLC)1227634003  |z (OCoLC)1241940545  |z (OCoLC)1259246708  |z (OCoLC)1290041315  |z (OCoLC)1300589208  |z (OCoLC)1303291202  |z (OCoLC)1303448713  |z (OCoLC)1306582298  |z (OCoLC)1351296850  |z (OCoLC)1356789716  |z (OCoLC)1373464382  |z (OCoLC)1398122563 
050 4 |a QA331.5  |b .Z34 2002eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
072 0 |a PBK 
072 |a PBK 
082 0 4 |a 515/.8  |2 21 
049 |a UAMI 
100 1 |a Zalinescu, C.,  |d 1952- 
245 1 0 |a Convex analysis in general vector spaces /  |c C Zălinescu. 
260 |a River Edge, N.J. ;  |a London :  |b World Scientific,  |c ©2002. 
300 |a 1 online resource (xx, 367 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
504 |a Includes bibliographical references (pages 349-357) and index. 
588 0 |a Print version record. 
520 8 |a Annotation The primary aim of this book is to present the conjugate and sub/differential calculus using the method of perturbation functions in order to obtain the most general results in this field. The secondary aim is to provide important applications of this calculus and of the properties of convex functions. Such applications are: the study of well-conditioned convex functions, uniformly convex and uniformly smooth convex functions, best approximation problems, characterizations of convexity, the study of the sets of weak sharp minima, well-behaved functions and the existence of global error bounds for convex inequalities, as well as the study of monotone multifunctions by using convex functions. 
505 0 |a Ch. 1. Preliminary results on functional analysis. 1.1. Preliminary notions and results. 1.2. Closedness and interiority notions. 1.3. Open mapping theorems. 1.4. Variational principles. 1.5. Exercises. 1.6. Bibliographical notes -- ch. 2. Convex analysis in locally convex spaces. 2.1. Convex functions. 2.2. Semi-continuity of convex functions. 2.3. Conjugate functions. 2.4. The subdifferential of a convex function. 2.5. The general problem of convex programming. 2.6. Perturbed problems. 2.7. The fundamental duality formula. 2.8. Formulas for conjugates and e-subdifferentials, duality relations and optimality conditions. 2.9. Convex optimization with constraints. 2.10. A minimax theorem. 2.11. Exercises. 2.12. Bibliographical notes -- ch. 3. Some results and applications of convex analysis in normed spaces. 3.1. Further fundamental results in convex analysis. 3.2. Convexity and monotonicity of subdifferentials. 3.3. Some classes of functions of a real variable and differentiability of convex functions. 3.4. Well conditioned functions. 3.5. Uniformly convex and uniformly smooth convex functions. 3.6. Uniformly convex and uniformly smooth convex functions on bounded sets. 3.7. Applications to the geometry of normed spaces. 3.8. Applications to the best approximation problem. 3.9. Characterizations of convexity in terms of smoothness. 3.10. Weak sharp minima, well-behaved functions and global error bounds for convex inequalities. 3.11. Monotone multifunctions. 3.12. Exercises. 3.13. Bibliographical notes. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Convex functions. 
650 0 |a Convex sets. 
650 0 |a Functional analysis. 
650 0 |a Vector spaces. 
650 6 |a Fonctions convexes. 
650 6 |a Ensembles convexes. 
650 6 |a Analyse fonctionnelle. 
650 6 |a Espaces vectoriels. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Convex functions  |2 fast 
650 7 |a Convex sets  |2 fast 
650 7 |a Functional analysis  |2 fast 
650 7 |a Vector spaces  |2 fast 
776 0 8 |i Print version:  |a Zalinescu, C., 1952-  |t Convex analysis in general vector spaces.  |d River Edge, NJ : World Scientific, ©2002  |z 9812380671  |z 9789812380678  |w (DLC) 2002069000  |w (OCoLC)49959262 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210672  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24684702 
938 |a EBSCOhost  |b EBSC  |n 210672 
938 |a YBP Library Services  |b YANK  |n 2736142 
994 |a 92  |b IZTAP