|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn277479104 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
081210s2008 enk ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d OCLCQ
|d CAMBR
|d IDEBK
|d CAMBR
|d OCLCA
|d OL$
|d OCLCQ
|d OCLCF
|d OCLCQ
|d AU@
|d OCLCQ
|d K6U
|d CNKEY
|d CN6UV
|d UKAHL
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 666940028
|a 849716012
|a 927135233
|a 1191128158
|
020 |
|
|
|a 9780511429842
|q (electronic bk.)
|
020 |
|
|
|a 0511429843
|q (electronic bk.)
|
020 |
|
|
|a 9780511543203
|q (electronic bk.)
|
020 |
|
|
|a 0511543204
|q (electronic bk.)
|
020 |
|
|
|z 0521753082
|
020 |
|
|
|z 9780521753081
|
020 |
|
|
|z 9780511428272
|
035 |
|
|
|a (OCoLC)277479104
|z (OCoLC)666940028
|z (OCoLC)849716012
|z (OCoLC)927135233
|z (OCoLC)1191128158
|
050 |
|
4 |
|a QC20.7.D5
|b G479 2008eb
|
072 |
|
7 |
|a SCI
|x 040000
|2 bisacsh
|
082 |
0 |
4 |
|a 530.155355
|2 22
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Soliton equations and their algebro-geometric solutions.
|n Vol. 2,
|p (1+1)-dimensional discrete models /
|c Fritz Gesztesy [and others].
|
246 |
3 |
0 |
|a (1+1)-dimensional discrete models
|
260 |
|
|
|a Cambridge, UK ;
|a New York :
|b Cambridge University Press,
|c 2008.
|
300 |
|
|
|a 1 online resource (x, 438 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Cambridge studies in advanced mathematics ;
|v 114
|
504 |
|
|
|a Includes bibliographical references (pages 398-421) and index.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a As a partner to Volume 1: Dimensional Continuous Models, this monograph provides a self-contained introduction to algebro-geometric solutions of completely integrable, nonlinear, partial differential-difference equations, also known as soliton equations. The systems studied in this volume include the Toda lattice hierarchy, the Kac-van Moerbeke hierarchy, and the Ablowitz-Ladik hierarchy. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The theory presented includes trace formulas, algebro-geometric initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses basic techniques from the theory of difference equations and spectral analysis, some elements of algebraic geometry and especially, the theory of compact Riemann surfaces. The presentation is constructive and rigorous, with ample background material provided in various appendices. Detailed notes for each chapter, together with an exhaustive bibliography, enhance understanding of the main results.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Differential equations, Nonlinear
|x Numerical solutions.
|
650 |
|
0 |
|a Solitons.
|
650 |
|
6 |
|a Équations différentielles non linéaires
|x Solutions numériques.
|
650 |
|
6 |
|a Solitons.
|
650 |
|
7 |
|a SCIENCE
|x Physics
|x Mathematical & Computational.
|2 bisacsh
|
650 |
|
7 |
|a Differential equations, Nonlinear
|x Numerical solutions.
|2 fast
|0 (OCoLC)fst00893478
|
650 |
|
7 |
|a Solitons.
|2 fast
|0 (OCoLC)fst01125558
|
700 |
1 |
|
|a Gesztesy, Fritz,
|d 1953-
|
776 |
0 |
8 |
|i Print version:
|t Soliton equations and their algebro-geometric solutions. Vol. 2, (1+1)-dimensional discrete models.
|d Cambridge, UK ; New York : Cambridge University Press, 2008
|z 9780521753081
|z 0521753082
|w (OCoLC)233263366
|
830 |
|
0 |
|a Cambridge studies in advanced mathematics ;
|v 114.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=244556
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH13422898
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 244556
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 179136
|
994 |
|
|
|a 92
|b IZTAP
|