Bayesian brain : probabilistic approaches to neural coding /
Experimental and theoretical neuroscientists use Bayesian approaches to analyse the brain mechanisms of perception decision-making, and motor control.
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, Mass. :
MIT Press,
©2007.
|
Colección: | Computational neuroscience.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- A probability primer / Kenji Doya, Shin Ishii
- Spike coding / Adrienne Fairhall
- Likelihood-based approaches to modeling the neural code / Jonathan Pillow
- Combining order statistics with Bayes theorem for millisecond-by-millisecond decoding of spike trains / Barry J. Richmond, Matthew C. Wiener
- Bayesian treatments of neuroimaging data / Will Penny, Karl Friston
- Population codes / Alexandre Pouget, Richard S. Zemel
- Computing with population codes / Peter Latham, Alexandre Pouget
- Efficient coding of visual scenes by grouping and segmentation / Tai Sing Lee, Alan L. Yuille
- Bayesian models of sensory cue integration / David C. Knill
- The speed and accuracy of a simple perceptual decision : a mathematical primer / Michael N. Shadlen [and others]
- Neural models of Bayesian belief propagation / Rajesh P.N. Rao
- Optimal control theory / Emanuel Todorov
- Bayesian statistics and utility functions in sensorimotor control / Konrad P. Körding, Daniel M. Wolpert.