Predicting structured data /
State-of-the-art algorithms and theory in a novel domain of machine learning, prediction when the output has structure. Machine learning develops intelligent computer systems that are able to generalize from previously seen examples. A new domain of machine learning, in which the prediction must sat...
Clasificación: | Libro Electrónico |
---|---|
Autor Corporativo: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, Mass. :
MIT Press,
©2007.
|
Colección: | Neural information processing series.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Measuring Similarity with Kernels
- Discriminative Models
- Modeling Structure via Graphical Models
- Joint Kernel Maps / Jason Weston [and others]
- Support Vector Machine Learning for Interdependent and Structured Output Spaces / Yasemin Altun, Thomas Hofmann, and Ioannis Tsochandiridis
- Efficient Algorithms for Max-Margin Structured Classification / Juho Rousu [and others]
- Discriminative Learning of Prediction Suffix Trees with the Perceptron Algorithm / Ofer Dekel, Shai Shalev-Shwartz, and Yoram Singer
- A General Regression Framework for Learning String-to-String Mappings / Corinna Cortes, Mehryar Mohri, and Jason Weston
- Learning as Search Optimization / Hal Daume III and Daniel Marcu
- Energy-Based Models / Yann LeCun [and others]
- Generalization Bounds and Consistency for Structured Labeling / David McAllester
- Kernel Conditional Graphical Models / Fernando Perez-Cruz, Zoubin Ghahramani, and Massimiliano Pontil
- Density Estimation of Structured Outputs in Reproducing Kernel Hilbert Spaces / Yasemin Altun and Alex J. Smola
- Gaussian Process Belief Propagation / Matthias W. Seeger.