Introduction to probability and statistics for engineers and scientists /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam ; Boston :
Elsevier/Academic Press,
©2004.
|
Edición: | 3rd ed. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Contents
- Preface
- CHAPTER 1 INTRODUCTION TO STATISTICS
- 1.1 INTRODUCTION
- 1.2 DATA COLLECTION AND DESCRIPTIVE STATISTICS
- 1.3 INFERENTIAL STATISTICS AND PROBABILITY MODELS
- 1.4 POPULATIONS AND SAMPLES
- 1.5 A BRIEF HISTORY OF STATISTICS
- CHAPTER 2 DESCRIPTIVE STATISTICS
- 2.1 INTRODUCTION
- 2.2 DESCRIBING DATA SETS
- 2.2.1 Frequency Tables and Graphs
- 2.2.2 Relative Frequency Tables and Graphs
- 2.2.3 Grouped Data, Histograms, Ogives, and Stem and Leaf Plots
- 2.3 SUMMARIZING DATA SETS
- 2.3.1 Sample Mean, Sample Median, and Sample Mode
- 2.3.2 Sample Variance and Sample Standard Deviation
- 2.3.3 Sample Percentiles and Box Plots
- 2.4 CHEBYSHEV'S INEQUALITY
- 2.5 NORMAL DATA SETS
- 2.6 PAIRED DATA SETS AND THE SAMPLE CORRELATION COEFFICIENT
- CHAPTER 3 ELEMENTS OF PROBABILITY
- 3.1 INTRODUCTION
- 3.2 SAMPLE SPACE AND EVENTS
- 3.3 VENN DIAGRAMS AND THE ALGEBRA OF EVENTS
- 3.4 AXIOMS OF PROBABILITY
- 3.5 SAMPLE SPACES HAVING EQUALLY LIKELY OUTCOMES
- 3.6 CONDITIONAL PROBABILITY
- 3.7 BAYES' FORMULA
- 3.8 INDEPENDENT EVENTS
- CHAPTER 4 RANDOM VARIABLES AND EXPECTATION
- 4.1 RANDOM VARIABLES
- 4.2 TYPES OF RANDOM VARIABLES
- 4.3 JOINTLY DISTRIBUTED RANDOM VARIABLES
- 4.3.1 Independent Random Variables
- *4.3.2 Conditional Distributions
- 4.4 EXPECTATION
- 4.5 PROPERTIES OF THE EXPECTED VALUE
- 4.5.1 Expected Value of Sums of Random Variables
- 4.6 VARIANCE
- 4.7 COVARIANCE AND VARIANCE OF SUMS OF RANDOM VARIABLES
- 4.8 MOMENT GENERATING FUNCTIONS
- 4.9 CHEBYSHEV'S INEQUALITY AND THE WEAK LAW OF LARGE NUMBERS
- CHAPTER 5 SPECIAL RANDOM VARIABLES
- 5.1 THE BERNOULLI AND BINOMIAL RANDOM VARIABLES
- 5.1.1 Computing the Binomial Distribution Function
- 5.2 THE POISSON RANDOM VARIABLE
- 5.2.1 Computing the Poisson Distribution Function
- 5.3 THE HYPERGEOMETRIC RANDOM VARIABLE
- 5.4 THE UNIFORM RANDOM VARIABLE
- 5.5 NORMAL RANDOM VARIABLES
- 5.6 EXPONENTIAL RANDOM VARIABLES
- *5.6.1 The Poisson Process
- *5.7 THE GAMMA DISTRIBUTION
- 5.8 DISTRIBUTIONS ARISING FROM THE NORMAL
- 5.8.1 The Chi-Square Distribution
- 5.8.2 The t-Distribution
- 5.8.3 The F-Distribution
- *5.9 THE LOGISTICS DISTRIBUTION
- CHAPTER 6 DISTRIBUTIONS OF SAMPLING STATISTICS
- 6.1 INTRODUCTION
- 6.2 THE SAMPLE MEAN
- 6.3 THE CENTRAL LIMIT THEOREM
- 6.3.1 Approximate Distribution of the Sample Mean
- 6.3.2 How Large a Sample Is Needed?
- 6.4 THE SAMPLE VARIANCE
- 6.5 SAMPLING DISTRIBUTIONS FROM A NORMAL POPULATION
- 6.5.1 Distribution of the Sample Mean
- 6.5.2 Joint Distribution of X and S2
- 6.6 SAMPLING FROM A FINITE POPULATION
- CHAPTER 7 PARAMETER ESTIMATION
- 7.1 INTRODUCTION
- 7.2 MAXIMUM LIKELIHOOD ESTIMATORS
- *7.2.1 Estimating Life Distributions
- 7.3 INTERVAL ESTIMATES
- 7.3.1 Confidence Interval for a Normal Mean When the Variance is Unknown
- 7.3.2 Confidence Intervals for the Variance of a Normal Distribution
- 7.4 ESTIMATING THE.