Cargando…

New directions in statistical signal processing : from systems to brain /

Signal processing and neural computation have separately and significantly influenced many disciplines, but the cross-fertilization of the two fields has begun only recently. Research now shows that each has much to teach the other, as we see highly sophisticated kinds of signal processing and elabo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Haykin, Simon S., 1931-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, Mass. : MIT Press, ©2007.
Colección:Neural information processing series.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 EBSCO_ocm77521428
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 070103s2007 maua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OCLCQ  |d OCLCG  |d OCLCQ  |d N$T  |d IDEBK  |d UV0  |d QE2  |d OCLCE  |d E7B  |d OCLCQ  |d CCO  |d DKDLA  |d NNM  |d FVL  |d OCLCQ  |d IEEEE  |d OCLCF  |d OCLCO  |d OCLCQ  |d COO  |d OCLCO  |d OCLCQ  |d OCLCO  |d EBLCP  |d OCLCQ  |d AZK  |d TOA  |d AGLDB  |d MOR  |d OCLCO  |d PIFBR  |d PIFAG  |d ZCU  |d OCLCO  |d MERUC  |d OCLCO  |d ESU  |d OCLCQ  |d OCLCO  |d WY@  |d OCLCO  |d OCLCA  |d U3W  |d LUE  |d OCLCO  |d STF  |d WRM  |d OCLCQ  |d VTS  |d OCLCQ  |d MERER  |d OCLCQ  |d ICG  |d CUY  |d OCLCQ  |d INT  |d REC  |d VT2  |d OCLCO  |d AU@  |d OCLCQ  |d OCLCO  |d MITPR  |d WYU  |d OCLCO  |d OCLCA  |d OCLCQ  |d OCLCO  |d LEAUB  |d OCLCO  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d K6U  |d OCLCA  |d UX1  |d OL$  |d UKCRE  |d SNU  |d UKSSU  |d UK7LJ  |d OCLCQ  |d OCLCO  |d OCLCA  |d M8D  |d OCLCO  |d OCLCQ  |d OCL 
015 |a GBA671791  |2 bnb 
015 |a GBA671791.  |2 bnb 
016 7 |z 013536699  |2 Uk 
019 |a 148793201  |a 228169954  |a 228169955  |a 473746968  |a 475448941  |a 568000769  |a 607844062  |a 609208517  |a 722566137  |a 728037360  |a 961519368  |a 962716687  |a 974200821  |a 974437145  |a 982304975  |a 988489573  |a 991913911  |a 992055259  |a 1018006113  |a 1037913547  |a 1038670433  |a 1041494199  |a 1047652407  |a 1053418672  |a 1054119184  |a 1055389940  |a 1066431409  |a 1081204198  |a 1100528245  |a 1153478596  |a 1154840616  |a 1154871946  |a 1155982093 
020 |a 9780262256315  |q (electronic bk.) 
020 |a 0262256312  |q (electronic bk.) 
020 |a 1429418737 
020 |a 9781429418737 
020 |a 0262292793 
020 |a 9780262292795 
020 |a 9786612096372 
020 |a 6612096373 
020 |a 1282096370 
020 |a 9781282096370 
020 |z 0262083485  |q (alk. paper) 
020 |z 9780262083485  |q (alk. paper) 
029 1 |a AU@  |b 000051284870 
029 1 |a AU@  |b 000051398042 
029 1 |a DEBBG  |b BV042508936 
029 1 |a DEBBG  |b BV043044367 
029 1 |a DEBBG  |b BV044105085 
029 1 |a DEBSZ  |b 422234982 
029 1 |a GBVCP  |b 802203477 
029 1 |a NZ1  |b 12061338 
029 1 |a YDXCP  |b 2504075 
029 1 |a DKDLA  |b 820120-katalog:999943778005765 
035 |a (OCoLC)77521428  |z (OCoLC)148793201  |z (OCoLC)228169954  |z (OCoLC)228169955  |z (OCoLC)473746968  |z (OCoLC)475448941  |z (OCoLC)568000769  |z (OCoLC)607844062  |z (OCoLC)609208517  |z (OCoLC)722566137  |z (OCoLC)728037360  |z (OCoLC)961519368  |z (OCoLC)962716687  |z (OCoLC)974200821  |z (OCoLC)974437145  |z (OCoLC)982304975  |z (OCoLC)988489573  |z (OCoLC)991913911  |z (OCoLC)992055259  |z (OCoLC)1018006113  |z (OCoLC)1037913547  |z (OCoLC)1038670433  |z (OCoLC)1041494199  |z (OCoLC)1047652407  |z (OCoLC)1053418672  |z (OCoLC)1054119184  |z (OCoLC)1055389940  |z (OCoLC)1066431409  |z (OCoLC)1081204198  |z (OCoLC)1100528245  |z (OCoLC)1153478596  |z (OCoLC)1154840616  |z (OCoLC)1154871946  |z (OCoLC)1155982093 
037 |a 4977  |b MIT Press 
037 |a 9780262256315  |b MIT Press 
042 |a dlr 
050 4 |a QP363.3  |b .N52 2007eb 
055 4 |a QP363.3 
055 3 |a QP363 .3  |b N49 2007 fol. 
060 4 |a 2006 N-993 
060 4 |a WL 26.5  |b N532 2007 
072 7 |a MED  |x 057000  |2 bisacsh 
072 7 |a PSY  |x 020000  |2 bisacsh 
082 0 4 |a 612.8/2  |2 22 
049 |a UAMI 
245 0 0 |a New directions in statistical signal processing :  |b from systems to brain /  |c edited by Simon Haykin [and others]. 
260 |a Cambridge, Mass. :  |b MIT Press,  |c ©2007. 
300 |a 1 online resource (vi, 514 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a Neural information processing series 
504 |a Includes bibliographical references (pages 465-508) and index. 
505 0 0 |t Modeling the mind : from circuits to systems /  |r Suzanna Becker --  |t Empirical statistics and stochastic models for visual signals /  |r David Mumford --  |t The machine cocktail party problem /  |r Simon Haykin, Zhe Chen --  |t Sensor adaptive signal processing of biological nanotubes (ion channels) at macroscopic and nano scales /  |r Vikram Krishnamurthy --  |t Spin diffusion : a new perspective in magnetic resonance imaging /  |r Timothy R. Field --  |t What makes a dynamical system computationally powerful? /  |r Robert Legenstein, Wolfgang Maass --  |t A variational principle for graphical models /  |r Martin J. Wainwright, Michael I. Jordan --  |t Modeling large dynamical systems with dynamical consistent neural networks /  |r Hans-Georg Zimmermann [and others] --  |t Diversity in communication : from source coding to wireless networks /  |r Suhas N. Diggavi --  |t Designing patterns for easy recognition : information transmission with low-density parity-check codes /  |r Frank R. Kschischang, Masoud Ardakani --  |t Turbo processing /  |r Claude Berrou, Charlotte Langlais, Fabrice Seguin --  |t Blind signal processing based on data geometric properties /  |r Konstantinos Diamantaras --  |t Game-theoretic learning /  |r Geoffrey J. Gordon --  |t Learning observable operator models via the efficient sharpening algorithm /  |r Herbert Jaeger [and others]. 
588 0 |a Print version record. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
520 |a Signal processing and neural computation have separately and significantly influenced many disciplines, but the cross-fertilization of the two fields has begun only recently. Research now shows that each has much to teach the other, as we see highly sophisticated kinds of signal processing and elaborate hierachical levels of neural computation performed side by side in the brain. In New Directions in Statistical Signal Processing, leading researchers from both signal processing and neural computation present new work that aims to promote interaction between the two disciplines. The book's 14 chapters, almost evenly divided between signal processing and neural computation, begin with the brain and move on to communication, signal processing, and learning systems. They examine such topics as how computational models help us understand the brain's information processing, how an intelligent machine could solve the "cocktail party problem" with "active audition" in a noisy environment, graphical and network structure modeling approaches, uncertainty in network communications, the geometric approach to blind signal processing, game-theoretic learning algorithms, and observable operator models (OOMs) as an alternative to hidden Markov models (HMMs) 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Neural networks (Neurobiology) 
650 0 |a Neural networks (Computer science) 
650 0 |a Signal processing  |x Statistical methods. 
650 0 |a Neural computers. 
650 0 |a Neural circuitry. 
650 0 |a Statistics. 
650 1 2 |a Neural Networks, Computer 
650 2 2 |a Algorithms 
650 2 2 |a Nerve Net 
650 2 2 |a Statistics as Topic 
650 6 |a Réseaux neuronaux (Neurobiologie) 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Traitement du signal  |x Méthodes statistiques. 
650 6 |a Ordinateurs neuronaux. 
650 6 |a Algorithmes. 
650 6 |a Réseaux nerveux. 
650 6 |a Statistiques. 
650 7 |a algorithms.  |2 aat 
650 7 |a MEDICAL  |x Neuroscience.  |2 bisacsh 
650 7 |a PSYCHOLOGY  |x Neuropsychology.  |2 bisacsh 
650 7 |a Statistics.  |2 fast  |0 (OCoLC)fst01132103 
650 7 |a Neural circuitry.  |2 fast  |0 (OCoLC)fst01036245 
650 7 |a Neural computers.  |2 fast  |0 (OCoLC)fst01036251 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
650 7 |a Neural networks (Neurobiology)  |2 fast  |0 (OCoLC)fst01036271 
650 7 |a Signal processing  |x Statistical methods.  |2 fast  |0 (OCoLC)fst01118304 
653 |a COMPUTER SCIENCE/Machine Learning & Neural Networks 
653 |a NEUROSCIENCE/General 
700 1 |a Haykin, Simon S.,  |d 1931- 
776 0 8 |i Print version:  |t New directions in statistical signal processing.  |d Cambridge, Mass. : MIT Press, ©2007  |z 0262083485  |w (DLC) 2005056210  |w (OCoLC)62302576 
830 0 |a Neural information processing series. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=176836  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3338650 
938 |a ebrary  |b EBRY  |n ebr10173712 
938 |a EBSCOhost  |b EBSC  |n 176836 
938 |a YBP Library Services  |b YANK  |n 3201014 
938 |a YBP Library Services  |b YANK  |n 2504075 
994 |a 92  |b IZTAP