Abelian varieties, theta functions, and the Fourier transform /
The aim of this book is to present a modern treatment of the theory of theta functions in the context of algebraic geometry. The novelty of its approach lies in the systematic use of the Fourier-Mukai transform.
Cote: | Libro Electrónico |
---|---|
Auteur principal: | |
Format: | Électronique eBook |
Langue: | Inglés |
Publié: |
Cambridge, UK ; New York :
Cambridge University Press,
2003.
|
Collection: | Cambridge tracts in mathematics ;
153. |
Sujets: | |
Accès en ligne: | Texto completo |
Table des matières:
- Cover; Half-title; Title; Copyright; Contents; Preface; Acknowledgments; References; 1 Line Bundles on Complex Tori; 2 Representations of Heisenberg Groups I; 3 Theta Functions I; 4 Representations of Heisenberg Groups II: Intertwining Operators; 5 Theta Functions II: Functional Equation; 6 Mirror Symmetry for Tori; 7 Cohomology of a Line Bundle on a Complex Torus: Mirror Symmetry Approach; 8 Abelian Varieties and Theorem of the Cube; 9 Dual Abelian Variety; 10 Extensions, Biextensions, and Duality; 11 Fourier-Mukai Transform; 12 Mumford Group and Riemann's Quartic Theta Relation.