Neural smithing : supervised learning in feedforward artificial neural networks /
"Artificial neural networks are nonlinear mapping systems whose structure is loosely based on principles observed in the nervous systems of humans and animals. The basic idea is that massive systems of simple units linked together in appropriate ways can generate many complex and interesting be...
Call Number: | Libro Electrónico |
---|---|
Main Author: | |
Other Authors: | |
Format: | Electronic eBook |
Language: | Inglés |
Published: |
Cambridge, Mass. :
MIT Press,
©1999.
©1999 |
Series: | Bradford book.
|
Subjects: | |
Online Access: | Texto completo |
Table of Contents:
- 1. Introduction
- 2. Supervised learning
- 3. Single-layer networks
- 4. MLP representational capabilities
- 5. Back-propagation
- 6. Learning rate and momentum
- 7. Weight-initialization techniques
- 8. The error surface
- 9. Faster variations of back-propagation
- 10. Classical optimization techniques
- 11. Genetic algorithms and neural networks
- 12. Constructive methods
- 13. Pruning algorithms
- 14. Factors influencing generalization
- 15. Generalization prediction and assessment
- 16. Heuristics for improving generalization
- 17. Effects of training with noisy inputs.