Adaptive Filters Theory and Applications.
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
1999.
|
Colección: | New York Academy of Sciences Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- Preface
- Acknowledgments
- Chapter 1 Introduction
- 1.1 Linear Filters
- 1.2 Adaptive Filters
- 1.3 Adaptive Filter Structures
- 1.4 Adaptation Approaches
- 1.4.1 Approach Based on Wiener Filter Theory
- 1.4.2 Method of Least-Squares
- 1.5 Real and Complex Forms of Adaptive Filters
- 1.6 Applications
- 1.6.1 Modeling
- 1.6.2 Inverse Modeling
- 1.6.3 Linear Prediction
- 1.6.4 Interference Cancellation
- Chapter 2 Discrete-Time Signals and Systems
- 2.1 Sequences and z-Transform
- 2.2 Parseval's Relation
- 2.3 System Function
- 2.4 Stochastic Processes
- 2.4.1 Stochastic Averages
- 2.4.2 z-Transform Representations
- 2.4.3 The Power Spectral Density
- 2.4.4 Response of Linear Systems to Stochastic Processes
- 2.4.5 Ergodicity and Time Averages
- Problems
- Chapter 3 Wiener Filters
- 3.1 Mean-Squared Error Criterion
- 3.2 Wiener Filter-Transversal, Real-Valued Case
- 3.3 Principle of Orthogonality
- 3.4 Normalized Performance Function
- 3.5 Extension to Complex-Valued Case
- 3.6 Unconstrained Wiener Filters
- 3.6.1 Performance Function
- 3.6.2 Optimum Transfer Function
- 3.6.3 Modeling
- 3.6.4 Inverse Modeling
- 3.6.5 Noise Cancellation
- 3.7 Summary and Discussion
- Problems
- Chapter 4 Eigenanalysis and Performance Surface
- 4.1 Eigenvalues and Eigenvectors
- 4.2 Properties of Eigenvalues and Eigenvectors
- 4.3 Performance Surface
- Problems
- Chapter 5 Search Methods
- 5.1 Method of Steepest Descent
- 5.2 Learning Curve
- 5.3 Effect of Eigenvalue Spread
- 5.4 Newton's Method
- 5.5 An Alternative Interpretation of Newton's Algorithm
- Problems
- Chapter 6 LMS Algorithm
- 6.1 Derivation of LMS Algorithm
- 6.2 Average Tap-Weight Behavior of the LMS Algorithm
- 6.3 MSE Behavior of the LMS Algorithm
- 6.3.1 Learning Curve
- 6.3.2 Weight-Error Correlation Matrix
- 6.3.3 Excess MSE and Misadjustment
- 6.3.4 Stability
- 6.3.5 The Effect of Initial Values of Tap Weights on the Transient Behavior of the LMS Algorithm
- 6.4 Computer Simulations
- 6.4.1 System Modeling
- 6.4.2 Channel Equalization
- 6.4.3 Adaptive Line Enhancement
- 6.4.4 Beamforming
- 6.5 Simplified LMS Algorithms
- 6.6 Normalized LMS Algorithm
- 6.7 Affine Projection LMS Algorithm
- 6.8 Variable Step-Size LMS Algorithm
- 6.9 LMS Algorithm for Complex-Valued Signals
- 6.10 Beamforming (Revisited)
- 6.11 Linearly Constrained LMS Algorithm
- 6.11.1 Statement of the Problem and Its Optimal Solution
- 6.11.2 Update Equations
- 6.11.3 Extension to the Complex-Valued Case
- Problems
- Chapter 7 Transform Domain Adaptive Filters
- 7.1 Overview of Transform Domain Adaptive Filters
- 7.2 Band-Partitioning Property of Orthogonal Transforms
- 7.3 Orthogonalization Property of Orthogonal Transforms
- 7.4 Transform Domain LMS Algorithm
- 7.5 Ideal LMS-Newton Algorithm and Its Relationship with TDLMS
- 7.6 Selection of the Transform T