Cargando…

Kalman Filtering Theory and Practice with MATLAB.

Detalles Bibliográficos
Autor principal: Grewal, Mohinder S.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2014.
Colección:New York Academy of Sciences Ser.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1347028053
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu||||||||
008 230209s2014 xx o ||| 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d OCLCQ  |d OCLCO  |d EBLCP  |d OCLCQ  |d OCLCL  |d OCLCQ 
020 |a 9781118984963 
020 |a 111898496X 
035 |a (OCoLC)1347028053 
082 0 4 |a 003/.5  |q OCoLC  |2 20/eng/20230216 
049 |a UAMI 
100 1 |a Grewal, Mohinder S. 
245 1 0 |a Kalman Filtering  |h [electronic resource] :  |b Theory and Practice with MATLAB. 
260 |a Newark :  |b John Wiley & Sons, Incorporated,  |c 2014. 
300 |a 1 online resource (639 p.). 
490 1 |a New York Academy of Sciences Ser. 
500 |a Description based upon print version of record. 
505 0 |a Cover -- Title Page -- Copyright -- Contents -- Preface to the Fourth Edition -- Acknowledgements -- List of Abbreviations -- Chapter 1 Introduction -- 1.1 Chapter Focus -- 1.2 On Kalman Filtering -- 1.2.1 First of All: What Is a Kalman Filter? -- 1.2.2 How It Came to Be Called a Filter -- 1.2.3 Its Mathematical Foundations -- 1.2.4 What It Is Used for -- 1.3 On Optimal Estimation Methods -- 1.3.1 Beginnings of Optimal Estimation Theory -- 1.3.2 Method of Least Squares -- 1.3.2.1 The Gramian of the Linear Least-Squares Problem -- 1.3.2.2 Least-Squares Solution 
505 8 |a 1.3.2.3 Least Squares in Continuous Time -- 1.3.2.4 Gramian Matrices and Observability -- 1.3.3 Mathematical Modeling of Uncertainty -- 1.3.4 The Wiener-Kolmogorov Filter -- 1.3.4.1 Wiener-Kolmogorov Filter Development -- 1.3.5 The Kalman Filter -- 1.3.5.1 Discovery -- 1.3.5.2 Introduction of the Kalman Filter -- 1.3.5.3 Early Applications: The Influence of Stanley F. Schmidt -- 1.3.5.4 Other Accomplishments of Kalman -- 1.3.5.5 Impact of Kalman Filtering on Technology -- 1.3.5.6 Relative Advantages of Kalman and Wiener-Kolmogorov Filtering -- 1.3.6 Implementation Methods 
505 8 |a 1.3.6.1 Numerical Stability Problems -- 1.3.6.2 Early ad hoc Fixes -- 1.3.6.3 James E. Potter (1937-2005) and Square-Root Filtering -- 1.3.6.4 Improved Square-Root and UD Filters -- 1.3.6.5 Matrix Decomposition, Factorization, and Triangularization -- 1.3.6.6 Generalizations -- 1.3.7 Nonlinear Approximations -- 1.3.7.1 Extended Kalman Filtering (EKF) for Quasilinear Problems -- 1.3.7.2 Higher Order Approximations -- 1.3.7.3 Sampling-Based Methods for Nonlinear Estimation -- 1.3.8 Truly Nonlinear Estimation -- 1.3.9 The Detection Problem for Surveillance -- 1.4 Common Notation 
505 8 |a 1.4.1 ""Dot"" Notation for Derivatives -- 1.4.2 Standard Symbols for Kalman Filter Variables -- 1.4.2.1 State Vector Notation for Kalman Filtering -- 1.4.3 Common Notation for Array Dimensions -- 1.5 Summary -- Problems -- References -- Chapter 2 Linear Dynamic Systems -- 2.1 Chapter Focus -- 2.1.1 The Bigger Picture -- 2.1.2 Models for Dynamic Systems -- 2.1.2.1 Differential Equations and State Variables -- 2.1.2.2 Other Approaches -- 2.1.3 Main Points to Be Covered -- 2.2 Deterministic Dynamic System Models -- 2.2.1 Dynamic Systems Modeled by Differential Equations -- 2.2.2 Newtonian Models 
505 8 |a 2.2.2.1 Rigid-Body Translational Mechanics -- 2.2.2.2 Rigid-Body Rotational Mechanics -- 2.2.2.3 Nonrigid Body Dynamic Models -- 2.2.3 State Variables and State Equations for Deterministic Systems -- 2.2.3.1 Homogeneous and Nonhomogeneous Differential Equations -- 2.2.3.2 State Variables Represent the Degrees of Freedom of Dynamic Systems -- 2.2.4 Continuous Time and Discrete Time -- 2.2.4.1 Shorthand Notation for Discrete-Time Systems -- 2.2.5 Time-Varying Systems and Time-Invariant Systems -- 2.3 Continuous Linear Systems and their Solutions 
500 |a 2.3.1 Input-Output Models of Linear Dynamic Systems 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
655 0 |a Electronic books. 
758 |i has work:  |a Kalman filtering (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCH68XFCKcvMhGwpMt4PgBq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Grewal, Mohinder S.  |t Kalman Filtering  |d Newark : John Wiley & Sons, Incorporated,c2014  |z 9781118851210 
830 0 |a New York Academy of Sciences Ser. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=7104322  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7104322 
994 |a 92  |b IZTAP