Bayesian Statistics An Introduction.
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2012.
|
Colección: | New York Academy of Sciences Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Bayesian Statistics
- Contents
- Preface
- Preface to the First Edition
- 1 Preliminaries
- 1.1 Probability and Bayes' Theorem
- 1.1.1 Notation
- 1.1.2 Axioms for probability
- 1.1.3 'Unconditional' probability
- 1.1.4 Odds
- 1.1.5 Independence
- 1.1.6 Some simple consequences of the axioms
- Bayes' Theorem
- 1.2 Examples on Bayes' Theorem
- 1.2.1 The Biology of Twins
- 1.2.2 A political example
- 1.2.3 A warning
- 1.3 Random variables
- 1.3.1 Discrete random variables
- 1.3.2 The binomial distribution
- 1.3.3 Continuous random variables
- 1.3.4 The normal distribution
- 1.3.5 Mixed random variables
- 1.4 Several random variables
- 1.4.1 Two discrete random variables
- 1.4.2 Two continuous random variables
- 1.4.3 Bayes' Theorem for random variables
- 1.4.4 Example
- 1.4.5 One discrete variable and one continuous variable
- 1.4.6 Independent random variables
- 1.5 Means and variances
- 1.5.1 Expectations
- 1.5.2 The expectation of a sum and of a product
- 1.5.3 Variance, precision and standard deviation
- 1.5.4 Examples
- 1.5.5 Variance of a sum
- covariance and correlation
- 1.5.6 Approximations to the mean and variance of a function of a random variable
- 1.5.7 Conditional expectations and variances
- 1.5.8 Medians and modes
- 1.6 Exercises on Chapter 1
- 2 Bayesian inference for the normal distribution
- 2.1 Nature of Bayesian inference
- 2.1.1 Preliminary remarks
- 2.1.2 Post is prior times likelihood
- 2.1.3 Likelihood can be multiplied by any constant
- 2.1.4 Sequential use of Bayes' Theorem
- 2.1.5 The predictive distribution
- 2.1.6 A warning
- 2.2 Normal prior and likelihood
- 2.2.1 Posterior from a normal prior and likelihood
- 2.2.2 Example
- 2.2.3 Predictive distribution
- 2.2.4 The nature of the assumptions made
- 2.3 Several normal observations with a normal prior
- 2.3.1 Posterior distribution
- 2.3.2 Example
- 2.3.3 Predictive distribution
- 2.3.4 Robustness
- 2.4 Dominant likelihoods
- 2.4.1 Improper priors
- 2.4.2 Approximation of proper priors by improper priors
- 2.5 Locally uniform priors
- 2.5.1 Bayes' postulate
- 2.5.2 Data translated likelihoods
- 2.5.3 Transformation of unknown parameters
- 2.6 Highest density regions
- 2.6.1 Need for summaries of posterior information
- 2.6.2 Relation to classical statistics
- 2.7 Normal variance
- 2.7.1 A suitable prior for the normal variance
- 2.7.2 Reference prior for the normal variance
- 2.8 HDRs for the normal variance
- 2.8.1 What distribution should we be considering?
- 2.8.2 Example
- 2.9 The role of sufficiency
- 2.9.1 Definition of sufficiency
- 2.9.2 Neyman's factorization theorem
- 2.9.3 Sufficiency principle
- 2.9.4 Examples
- 2.9.5 Order statistics and minimal sufficient statistics
- 2.9.6 Examples on minimal sufficiency
- 2.10 Conjugate prior distributions
- 2.10.1 Definition and difficulties