Causal Inference in Statistics A Primer.
Autor principal: | |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2016.
|
Colección: | New York Academy of Sciences Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Title Page
- Copyright
- Dedication
- Table of Contents
- About the Authors
- Preface
- Acknowledgments
- List of Figures
- About the Companion Website
- Chapter 1: Preliminaries: Statistical and Causal Models
- 1.1 Why Study Causation
- 1.2 Simpson's Paradox
- 1.3 Probability and Statistics
- 1.4 Graphs
- 1.5 Structural Causal Models
- Bibliographical Notes for Chapter 1
- Chapter 2: Graphical Models and Their Applications
- 2.1 Connecting Models to Data
- 2.2 Chains and Forks
- 2.3 Colliders
- 2.4 d-separation
- 2.5 Model Testing and Causal Search
- Bibliographical Notes for Chapter 2
- Chapter 3: The Effects of Interventions
- 3.1 Interventions
- 3.2 The Adjustment Formula
- 3.3 The Backdoor Criterion
- 3.4 The Front-Door Criterion
- 3.5 Conditional Interventions and Covariate-Specific Effects
- 3.6 Inverse Probability Weighing
- 3.7 Mediation
- 3.8 Causal Inference in Linear Systems
- Bibliographical Notes for Chapter 3
- Chapter 4: Counterfactuals and Their Applications
- 4.1 Counterfactuals
- 4.2 Defining and Computing Counterfactuals
- 4.3 Nondeterministic Counterfactuals
- 4.4 Practical Uses of Counterfactuals
- 4.5 Mathematical Tool Kits for Attribution and Mediation
- Bibliographical Notes for Chapter 4
- References
- Index
- End User License Agreement