Cargando…

Data Mining for Business Analytics Concepts, Techniques, and Applications with XLMiner.

Detalles Bibliográficos
Autor principal: Bruce, Peter C.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2016.
Colección:New York Academy of Sciences Ser.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1347024192
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu||||||||
008 230209s2016 xx o ||| 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d OCLCO  |d OCLCQ  |d EBLCP  |d OCLCQ 
020 |a 9781118729243 
020 |a 1118729242 
035 |a (OCoLC)1347024192 
049 |a UAMI 
100 1 |a Bruce, Peter C. 
245 1 0 |a Data Mining for Business Analytics  |h [electronic resource] :  |b Concepts, Techniques, and Applications with XLMiner. 
260 |a Newark :  |b John Wiley & Sons, Incorporated,  |c 2016. 
300 |a 1 online resource (601 p.). 
490 1 |a New York Academy of Sciences Ser. 
500 |a Description based upon print version of record. 
505 0 |a Intro -- Title Page -- Copyright -- Dedication -- Foreword -- Preface to the Third Edition -- Preface to the First Edition -- Acknowledgments -- Part I: Preliminaries -- Chapter 1: Introduction -- 1.1 What is Business Analytics? -- 1.2 What is Data Mining? -- 1.3 Data Mining and Related Terms -- 1.4 Big Data -- 1.5 Data Science -- 1.6 Why are There so Many Different Methods? -- 1.7 Terminology and Notation -- 1.8 Road Maps to This Book -- Chapter 2: Overview of the Data Mining Process -- 2.1 Introduction -- 2.2 Core Ideas in Data Mining -- 2.3 The Steps in Data Mining -- 2.4 Preliminary Steps 
505 8 |a 2.5 Predictive Power and Overfitting -- 2.6 Building a Predictive Model with XLMiner -- 2.7 Using Excel for Data Mining -- 2.8 Automating Data Mining Solutions -- Problems -- Part II: Data Exploration and Dimension Reduction -- Chapter 3: Data Visualization -- 3.1 Uses of Data Visualization -- 3.2 Data Examples -- 3.3 Basic Charts: Bar Charts, Line Graphs, and Scatter Plots -- 3.4 Multidimensional Visualization -- 3.5 Specialized Visualizations -- 3.6 Summary: Major Visualizations and Operations, by Data Mining Goal -- Problems -- Chapter 4: Dimension Reduction -- 4.1 Introduction 
505 8 |a 4.2 Curse of Dimensionality -- 4.3 Practical Considerations -- 4.4 Data Summaries -- 4.5 Correlation Analysis -- 4.6 Reducing the Number of Categories in Categorical Variables -- 4.7 Converting a Categorical Variable to a Numerical Variable -- 4.8 Principal Components Analysis -- 4.9 Dimension Reduction Using Regression Models -- 4.10 Dimension Reduction Using Classification and Regression Trees -- Problems -- Part III: Performance Evaluation -- Chapter 5: Evaluating Predictive Performance -- 5.1 Introduction -- 5.2 Evaluating Predictive Performance -- 5.3 Judging Classifier Performance 
505 8 |a 5.4 Judging Ranking Performance -- 5.5 Oversampling -- Problems -- Part IV: Prediction and Classification Methods -- Chapter 6: Multiple Linear Regression -- 6.1 Introduction -- 6.2 Explanatory vs. Predictive Modeling -- 6.3 Estimating the Regression Equation and Prediction -- 6.4 Variable Selection in Linear Regression -- Problems -- Chapter 7: k-Nearest-Neighbors (k-NN) -- 7.1 The k-NN Classifier (Categorical Outcome) -- 7.2 k-NN for a Numerical Response -- 7.3 Advantages and Shortcomings of k-NN Algorithms -- Problems -- Chapter 8: The Naive Bayes Classifier -- 8.1 Introduction 
505 8 |a 8.2 Applying the Full (Exact) Bayesian Classifier -- 8.3 Advantages and Shortcomings of the Naive Bayes Classifier -- Problems -- Chapter 9: Classification and Regression Trees -- 9.1 Introduction -- 9.2 Classification Trees -- 9.3 Evaluating the Performance of a Classification Tree -- 9.4 Avoiding Overfitting -- 9.5 Classification Rules from Trees -- 9.6 Classification Trees for More Than two Classes -- 9.7 Regression Trees -- 9.8 Advantages, Weaknesses, and Extensions -- 9.9 Improving Prediction: Multiple Trees -- Problems -- Chapter 10: Logistic Regression -- 10.1 Introduction 
500 |a 10.2 The Logistic Regression Model 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
655 0 |a Electronic books. 
776 0 8 |i Print version:  |a Bruce, Peter C.  |t Data Mining for Business Analytics  |d Newark : John Wiley & Sons, Incorporated,c2016  |z 9781118729472 
830 0 |a New York Academy of Sciences Ser. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=7104001  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7104001 
994 |a 92  |b IZTAP