Cargando…

Pathways to Water Sector Decarbonization, Carbon Capture and Utilization

The water sector is in the middle of a paradigm shift from focusing on treatment and meeting discharge permit limits to integrated operation that also enables a circular water economy via water reuse, resource recovery, and system level planning and operation. While the sector has gone through diffe...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Ren, Zhiyong Jason (Editor ), Pagilla, Krishna (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [s.l.] : IWA Publishing, 2022.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Cover
  • Contents
  • About the Editors
  • List of Contributors
  • Foreword by Kala Vairavamoorthy
  • Foreword by Art K.Umble
  • Preface
  • Chapter 1: Toward a net zero circular water economy
  • 1.1 THE WATER SECTOR AND THE CHALLENGES AND OPPORTUNITIES ON DECARBONIZATION
  • 1.2 PATHWAYS TOWARD WATER AND WASTEWATER DECARBONIZATION
  • 1.2.1 Decarbonization requires a better understanding of emission baseline
  • 1.2.2 Decarbonization requires a combination of approaches and collaborations among stakeholders
  • 1.2.3 Processes and technologies that enable energy and resource recovery
  • 1.2.4 Processes and technologies that enable additional benefits of carbon capture and utilization, and watershed management
  • 1.2.5 Case studies on utility decarbonization practice
  • 1.3 THE PARADIGM CHANGE FOR A NET ZERO CIRCULAR WATER ECONOMY
  • REFERENCES
  • doi: 10.2166/9781789061796
  • Chapter 2: What can we learn from decarbonization of the energy sector?
  • 2.1 INTRODUCTION: ENERGY AND WATER: SIMILARITIES, DIFFERENCES, AND A COMPLEX RELATIONSHIP
  • 2.1.1 The energy-water nexus
  • 2.1.2 Differences in scale
  • 2.1.3 The carbon-water nexus
  • 2.2 DECARBONIZATION OF THE ENERGY SECTOR
  • 2.3 A FRAMEWORK FOR SUSTAINABILITY FOR ENERGY AND WATER
  • 2.4 THE PACE OF DECARBONIZATION
  • 2.4.1 Residential and commercial equipment
  • 2.4.2 Transportation equipment
  • 2.4.3 Utility equipment
  • 2.4.4 Integration
  • 2.5 CASE STUDIES
  • 2.5.1 Energy efficient lighting
  • 2.5.2 Electric vehicles
  • 2.5.3 Cellulosic biomass
  • 2.5.4 Wind and solar
  • ACKNOWLEDGEMENTS
  • REFERENCES
  • Chapter 3: Greenhouse gases in the urban water cycle
  • 3.1 INTRODUCTION
  • 3.1.1 Overview of the urban water cycle
  • 3.1.2 Definition of scope 1, 2 and 3 emissions
  • 3.1.3 Water footprint and carbon footprint
  • 3.2 GREENHOUSE GASSES IN THE WATER CYCLE
  • 3.2.1 Scope 1
  • direct emissions
  • from own and controlled sources
  • 3.2.1.1 Design and construction of new assets
  • 3.2.1.2 Water and wastewater collection systems
  • 3.2.1.3 Water and wastewater treatment and sludge management
  • 3.2.2 Scope 2
  • GHGs from energy use
  • 3.2.2.1 Pumping
  • 3.2.2.2 Water treatment process
  • 3.2.2.3 Wastewater treatment process
  • 3.2.2.4 Scope 2
  • energy generation
  • 3.2.3 Scope 3
  • indirect emissions from other activities
  • 3.2.4 Carbon sequestration and mitigation
  • 3.3 PROTOCOLS
  • 3.3.1 International protocols
  • 3.3.1.1 IPCC
  • 3.3.1.2 World resources institute (WRI)
  • 3.3.2 Regional protocols
  • 3.3.2.1 United Kingdom
  • UKWIR
  • 3.3.2.2 United States
  • LGOP
  • 3.3.2.3 Germany
  • ECAM tool
  • 3.3.2.4 Australia
  • NGER system
  • 3.3.2.5 CCME
  • Canadian council of ministers of the environment
  • 3.3.2.6 Summary of regional protocols
  • 3.4 METHODS OF GHG QUANTIFICATION
  • 3.4.1 Emission factors
  • 3.4.2 Direct measurement
  • 3.4.3 Models
  • 3.4.4 Quantification method selection
  • 3.5 A FRAMEWORK FOR CARBON FOOTPRINT ANALYSIS
  • 3.5.1 A roadmap to reducing carbon footprint in the water cycle