Cargando…

Corrosion Science

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kumar, N. Suresh
Otros Autores: Banerjee, P., Manjunatha, H.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : Bentham Science Publishers, 2021.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title
  • Copyright
  • End User License Agreement
  • Contents
  • Preface
  • List of Contributors
  • Testing the Types of Corrosion
  • D. Chandra Sekhar1, N. Suresh Kumar2,*, K. Chandra Babu Naidu3, B. Venkata Shiva Reddy3,4 and T. Anil Babu3
  • 1. INTRODUCTION
  • 2. SALT-SPRAY (FOG) TEST
  • 3. MODIFIED SALT FOG TESTS
  • 3.1. Acetic Acid Salt Spray (Fog) Test
  • 3.2. Cyclic Acidified Salt Fog Test
  • 3.3. Acidified Synthetic Sea Water (Fog) Test
  • 3.4. Salt/SO2 Spray (Fog) Test
  • 3.5. Dilute Electrolyte Cyclic Fog/Dry Test
  • 4. CYCLIC SALT FOG/UV EXPOSURE
  • 5. CASS TEST
  • 5.1. Corrodkote Test
  • 5.2. Filiform Test
  • 5.3. High Humidity Tests
  • 5.4. Corrosive Gas Tests
  • 6. ASTM G 87
  • 6.1. Mixed Flowing Gas
  • 7. CYCLIC CORROSION TESTS
  • 8. ELECTROCHEMICAL TECHNIQUES FOR CORROSION TESTING
  • 8.1. Linear Polarization Method-Evaluation of Corrosion Rates
  • 8.2. Potentiodynamic Polarization Measurements
  • 8.3. Electrochemical Impedance Spectroscopy (EIS)
  • 8.4. Application of Electrochemical Impedance to Corrosion Studies
  • 8.5. Advantages and Limitations of EIS
  • 9. RECENT CORROSION RESEARCH
  • CONCLUSION
  • CONSENT FOR PUBLICATION
  • CONFLICT OF INTEREST
  • ACKNOWLEDGEMENTS
  • REFERENCES
  • Anti-Corrosion Coating Mechanisms
  • D. Chandra Sekhar1, N. Suresh Kumar2,*, K. Chandra Babu Naidu3, B. Venkata Shiva Reddy3,4 and T. Anil Babu3
  • 1. INTRODUCTION
  • 2. DIFFERENT COATING MECHANISMS
  • 2.1. Barrier Coatings
  • 2.2. Sacrificial Coatings
  • 2.3. Inhibitive Coatings
  • 2.4. Inorganic Coatings
  • 2.5. Passivation: Anti-Corrosion Coating
  • 3. ANTI-CORROSION COATINGS
  • 3.1. Polymeric Materials
  • 3.2. Metallic Coatings
  • 3.2.1. Electroplated Coatings
  • 3.2.2. Electroless Metal Coatings
  • 3.2.3. Hot-dip Coating
  • 3.2.4. Thermal Spraying
  • 3.2.5. Cladding
  • 4.2.6. Vapor Deposited Coatings.
  • 3.2.7. Ion Implantation and Laser Processing
  • 3.3. The Organic Coating System
  • 3.4. Pigments
  • 3.5. Solvents, Additives and Fillers
  • 4. APPLICATIONS
  • 4.1. Smart Coatings
  • 4.2. Recent Advances in Protective Coatings
  • CONCLUSION
  • CONSENT FOR PUBLICATION
  • CONFLICT OF INTEREST
  • ACKNOWLEDGEMENTS
  • REFERENCES
  • Corrosion in Electronics
  • U. Naresh1, N. Suresh Kumar2,*, K. Chandra Babu Naidu3, B. Venkata Shiva Reddy3,4, A. Manohar5, M. Ajay Kumar6 and T. Anil Babu3
  • 1. INTRODUCTION
  • 2. FACTORS INFLUENCING CLIMATIC RELIABILITY
  • 2.1. Humidity
  • 2.2. Water Absorption by the PCBA
  • 2.3. Water Adsorption by the Hygroscopic Contaminants on the PCBA
  • 2.4. User Environment Related Contamination
  • 3. HUMIDITY AND CONTAMINATION RELATED FAILURES
  • 3.1. Leakage Current
  • 3.2. Electrochemical Migration
  • 3.3. Formation of Anode Filament
  • 4. TYPES OF CORROSION
  • 4.1. Electrolytic Corrosion
  • 4.2. Galvanic Corrosion Mechanism
  • 4.3. Creep Corrosion
  • 5. PROTECTION OF ELECTRONIC CORROSION
  • 5.1. Protecting Against Corrosive Failures
  • 5.2. Material Compatibility
  • 5.3. Printed Circuit Board Polish
  • 5.4. Conformal Coatings
  • 6. TYPES OF CONFORMAL COATINGS
  • 6.1. Acrylic Coating
  • 6.2. Epoxy Coatings
  • 6.3. Urethane Type
  • 6.4. Ultraviolet Light Curable Coatings
  • 6.5. Silicone Type Coatings
  • 7. COATING TECHNIQUES
  • CONCLUSION
  • CONSENT FOR PUBLICATION
  • CONFLICT OF INTEREST
  • ACKNOWLEDGEMENTS
  • REFERENCES
  • Corrosion of Polymer Materials
  • U. Naresh1, N. Suresh Kumar2,*, K. Chandra Babu Naidu3, B. Venkata Shiva Reddy3, 4, A. Manohar5 and T. Anil Babu3
  • 1. INTRODUCTION
  • 2. CHEMICAL REACTION
  • 3. CAUSES OF CORROSION
  • 3.1. Moisture
  • 3.2. Water Absorption
  • 3.3. Water Adsorption by the Hygroscopic Contaminants
  • 4. TYPES OF CORROSION
  • 4.1. General Corrosion
  • 4.2. Galvanic Corrosion.
  • 4.3. Pitting Corrosion
  • 4.4. Dealloying
  • 4.5. Erosion Corrosion
  • 4.6. Fretting
  • 5. CORROSION PROTECTION-CONDUCTING POLYMERS
  • 5.1. Poly-aniline- Magnetic Nanoparticles Coatings
  • 5.2. Poly-aniline-Carbon Based Materials
  • CONCLUSION
  • CONSENT FOR PUBLICATION
  • CONFLICT OF INTEREST
  • ACKNOWLEDGEMENTS
  • REFERENCES
  • Corrosion and Corrosion Protection in Drinking Water Systems
  • T. Vidya Sagar1, N. Suresh Kumar2,*, K. Chandra Babu Naidu3, B. Venkata Shiva Reddy3, 4, D. Baba Basha5 and T. Anil Babu3
  • 1. INTRODUCTION
  • 2. EFFECT OF PH ON THE CORROSION OF DWDS
  • 3. ALKALINITY AND LANGELIER SATURATION INDEX (LSI)
  • 4. BUFFER INTENSITY
  • 5. TOTAL DISSOLVED INORGANIC CARBON AND ORGANIC CARBON
  • 6. DISSOLVED OXYGEN (DO)
  • 7. HARDNESS OF WATER
  • 8. LARSON INDEX (LI)
  • 9. PHOSPHATE AND SILICATE-BASED INHIBITOR EFFECTS
  • 10. LEAD AND COPPER RULE (LCR)
  • 11. PRESENCE OF CADMIUM AND ZINC
  • 12. TEMPERATURE EFFECT
  • 13. MICROBIOLOGICAL ACTIVITIES
  • 14. PROTECTION OF DWDS
  • 14.1. Effect of Chloramination
  • 14.2. Toxicity of Iron-based Deposits
  • 14.3. Galvanic Corrosion Between Stainless-Steel and Lead
  • 14.4. Protection from Galvanic Corrosion Between Steel and Lead
  • 14.5. The Effect of Stagnation Time and Temperature of Water in Leaching of Copper and Zinc in DWDS
  • 14.6. The Corrosive Nature of Mn in DWDs and Protection of Pipes from Mn
  • 14.7. Corrosion Protection of Steel
  • 14.8. Copper Pitting in DWDs and Protection
  • 14.9. Protection of Al Based Pipes from Corrosion
  • 14.10. Protection of Magnesium Based Alloys from Corrosion
  • CONCLUSION
  • CONSENT FOR PUBLICATION
  • CONFLICT OF INTEREST
  • ACKNOWLEDGEMENTS
  • REFERENCES
  • Corrosion in Reinforcement Cement Concrete
  • B. Venkata Shiva Reddy1, 2, N. Suresh Kumar3, K. Chandra Babu Naidu1,*, D. Baba Basha4, M. Balaraju5 and T. Anil Babu1
  • 1. INTRODUCTION.
  • 2. DISCUSSION
  • 2.1. Impact of Bacteria on the Reinforcement Concrete
  • 2.2. The Impact of Heat and Temperature on the Mechanical Properties of Steel
  • 2.3. Impact of Temperature on The Corrosion of Steel
  • CONCLUSION
  • CONSENT FOR PUBLICATION
  • CONFLICT OF INTEREST
  • ACKNOWLEDGEMENTS
  • REFERENCES
  • Environmental Cracking of High-Strength Aluminum Alloys
  • B. Venkata Shiva Reddy1,2, N. Suresh Kumar3, K. Chandra Babu Naidu1,*, M. Balaraju4 and T. Anil Babu1
  • 1. INTRODUCTION
  • 2. DISCUSSION
  • 2.1. The Role and Mitigation of Corrosion
  • 2.2. The Role of Fatigue in Cracking of Aluminum Alloy
  • 2.3. Impact of Temperature on Aluminum Alloy
  • CONCLUSION
  • CONSENT FOR PUBLICATION
  • CONFLICT OF INTEREST
  • ACKNOWLEDGEMENTS
  • REFERENCES
  • Corrosion of Nuclear Waste Systems
  • K. Ramakrishna Reddy1, N. Suresh Kumar2,*, K. Chandra Babu Naidu3, B. Venkata Shiva Reddy3, 4 and T. Anil Babu3
  • 1. INTRODUCTION
  • 2. POTENTIAL CORROSION ISSUES IN NUCLEAR WASTE PACKAGES
  • 2.1. Description of Typical Waste Packages
  • 2.2. Vitrified High-Level Waste
  • 2.3. Cemented Radioactive Waste
  • 2.4. Corrosion Issues in Canister Material of Carbon Steel and Cast Iron
  • 2.5. Substances for Radioactive Waste Disposals
  • 2.6. Nuclear Waste Forms of The Glasses
  • 2.7. Borosilicate Glass Waste Form
  • 2.8. Phosphate Glass Waste Form
  • 2.9. Waste Form of Rare Earth Oxide Glass
  • 2.10. High Silicate Glass Waste Form
  • CONCLUSION
  • CONSENT FOR PUBLICATION
  • CONFLICT OF INTEREST
  • ACKNOWLEDGEMENTS
  • REFERENCES
  • Microbiologically Influenced Corrosion
  • K. Ram Mohan Rao1,*, K. Haripriya2, P. Banerjee3 and A. Franco4
  • 1. INTRODUCTION
  • 2. A BRIEF HISTORICAL PERSPECTIVE
  • 3. BIOFILM
  • 4. MECHANISMS OF MIC
  • 4.1. Cathodic Depolarization Theory
  • 4.2. Biocatalytic Cathodic Sulfate Reduction (BCSR) Theory
  • 4.3. Acid Producing Bacteria (APB).
  • 4.4. Archaea
  • 5. MITIGATION OF MIC/BIOFILMS
  • 5.1. Conventional Mitigation Methods
  • 5.2. Biocide Enhancers
  • CONCLUSION
  • CONSENT FOR PUBLICATION
  • CONFLICT OF INTEREST
  • ACKNOWLEDGEMENTS
  • REFERENCES
  • Power Plant Corrosion
  • S. Ramesh1,*, N.V. Krishna Prasad1, N. Suresh Kumar2, K. Chandra Babu Naidu1,*, M.S.S.R.K.N. Sarma1, K. Venkata Ratnam3, H. Manjunatha3, B. Parvatheeswara Rao4 and T. Anil Babu1
  • 1. INTRODUCTION
  • 2. TYPES OF POWER PLANT CORROSION
  • 1.1. Oxide Corrosion
  • 2.2. Galvanic Corrosion
  • 2.3. Hot Corrosion
  • 2.4. Type I Hot Corrosion (HTHC)
  • 2.5. Type II Hot Corrosion (LTHC)
  • 2.6. Mechanism of Hot Corrosion
  • 3. EROSION
  • 3.1. Solid Particle Erosion (SPE)
  • 3.2. Cavitations Erosion (CE)
  • 3.3. Liquid Impingement Erosion (LIE)
  • 3.4. Slurry Erosion (SE)
  • 4. PREVENTIVE METHODS OF CORROSION IN POWER PLANTS
  • 4.1. Corrosion Resistant Materials and Alloys
  • 4.2. Modification of the Environment/Coatings
  • CONCLUSION
  • CONSENT FOR PUBLICATION
  • CONFLICT OF INTEREST
  • ACKNOWLEDGEMENTS
  • REFERENCES
  • Corrosion in Chemical and Fertilizer Industries
  • N.V. Krishna Prasad1,*, S. Ramesh1, K. Chandra Babu Naidu1, M.S.S.R.K.N. Sarma1, K. Venkata Ratnam2, H. Manjunatha2 and B. Chandra Sekhar3
  • 1. INTRODUCTION
  • 2. TYPES OF CORROSION
  • 2.1. Rust
  • 2.2. Galvanic Corrosion
  • 2.3. Stress Corrosion Cracking
  • 2.4. General Corrosion
  • 2.5. Localized Corrosion
  • 2.6. Caustic Corrosion
  • 3. CHEMICAL FERTILIZER INDUSTRY AND ITS GROWTH IN INDIA
  • 4. CORROSION IN FERTILIZER INDUSTRY
  • 5. CORROSION IN UREA MANUFACTURING PLANTS
  • 6. CORROSION IN PAPER INDUSTRY
  • 7. CORROSION IN OIL AND GAS INDUSTRY
  • 8. CORROSION DUE TO AGRICULTURAL CHEMICALS
  • CONCLUSION
  • CONSENT FOR PUBLICATION
  • CONFLICT OF INTEREST
  • ACKNOWLEDGEMENTS
  • REFERENCES
  • Marine Corrosion.