Statistics and the Evaluation of Evidence for Forensic Scientists
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2020.
|
Edición: | 3rd ed. |
Colección: | Statistics in Practice Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- Foreword
- Preface to Third Edition
- Preface to Second Edition
- Preface to First Edition
- Chapter 1 Uncertainty in Forensic Science
- 1.1 Introduction
- 1.2 Statistics and the Law
- 1.3 Uncertainty in Scientific Evidence
- 1.3.1 The Frequentist Method
- 1.3.2 Stains of Body Fluids
- 1.3.3 Glass Fragments
- 1.4 Terminology
- 1.5 Types of Data
- 1.6 Populations
- 1.7 Probability
- 1.7.1 Introduction
- 1.7.2 A Standard for Uncertainty
- 1.7.3 Events
- 1.7.4 Classical and Frequentist Definitions of Probability and Their Limitations
- 1.7.5 Subjective Definition of Probability
- 1.7.6 The Quantification of Probability Through a Betting Scheme
- 1.7.7 Probabilities and Frequencies: The Role of Exchangeability
- 1.7.8 Laws of Probability
- 1.7.9 Dependent Events and Background Information
- 1.7.10 Law of Total Probability
- 1.7.11 Updating of Probabilities
- Chapter 2 The Evaluation of Evidence
- 2.1 Odds
- 2.1.1 Complementary Events
- 2.1.2 Examples
- 2.1.3 Definition of Odds
- 2.2 Bayes' Theorem
- 2.2.1 Statement of the Theorem
- 2.2.2 Examples
- 2.3 The Odds Form of Bayes' Theorem
- 2.3.1 Likelihood Ratio
- 2.3.2 Bayes' Factor and Likelihood Ratio
- 2.3.3 Three-Way Tables
- 2.3.4 Logarithm of the Likelihood Ratio
- 2.4 The Value of Evidence
- 2.4.1 Evaluation of Forensic Evidence
- 2.4.2 Justification of the Use of the Likelihood Ratio
- 2.4.3 Single Value for the Likelihood Ratio
- 2.4.4 Role of Background Information
- 2.4.5 Summary of Competing Propositions
- 2.4.6 Qualitative Scale for the Value of the Evidence
- 2.5 Errors in Interpretation
- 2.5.1 Fallacy of the Transposed Conditional
- 2.5.2 Source Probability Error
- 2.5.3 Ultimate Issue Error
- 2.5.4 Defence Attorney's Fallacy
- 2.5.5 Probability (Another Match) Error
- 2.5.6 Numerical Conversion Error
- 2.5.7 False Positive Fallacy
- 2.5.8 Expected Value Fallacy
- 2.5.9 Uniqueness
- 2.5.10 Other Difficulties
- 2.5.11 Empirical Evidence of Errors in Interpretation
- 2.6 Misinterpretations
- 2.7 Explanation of Transposed Conditional, Defence Attorney's and False Positive Fallacies
- 2.7.1 Explanation of the Fallacy of the Transposed Conditional
- 2.7.2 Explanation of the Defence Attorney's Fallacy
- 2.7.3 Explanation of the False Positive Fallacy
- 2.8 Making Coherent Decisions
- 2.8.1 Elements of Statistical Decision Theory
- 2.8.2 Decision Analysis: An Example
- 2.9 Graphical Probabilistic Models: Bayesian Networks
- 2.9.1 Elements of the Bayesian Networks
- 2.9.2 The Construction of Bayesian Networks
- 2.9.3 Bayesian Decision Networks (Influence Diagrams)
- Chapter 3 Historical Review
- 3.1 Early History
- 3.2 The Dreyfus Case
- 3.3 Statistical Arguments by Early Twentieth-Century Forensic Scientists
- 3.4 People v. Collins
- 3.5 Discriminating Power
- 3.5.1 Derivation